
1

Today
• Memory Management: Page Replacement

Dec 5, 2018 Sprenkle - CSCI330 1

Review
• What is paging? Segmentation?

ØWhat are they used for?
ØHow does the OS translate from the virtual address

to the physical address?
ØCompare and contrast them

• What hardware support is provided for VM?
• How can we improve the efficiency/performance

of address translations?

Dec 5, 2018 Sprenkle - CSCI330 2

2

Review: Defining Regions
• Segmentation:

ØPartition address space and
memory into logical segments

Ø Segments have varying sizes
• Paging:

ØPartition address space and
memory into pages

ØPages are a constant, fixed size

Dec 5, 2018 Sprenkle - CSCI330 3

Review: Pros and Cons of
Segmentation
Pros
• Each segment can be

Ø located independently
Ø separately protected
Ø grown/shrunk independently

• Small segment table size
Ø ~256 Bytes à 1GB memory

Cons
• Variable-size allocation

Ø Difficult to find holes in
physical memory

Ø External fragmentation

Dec 5, 2018 Sprenkle - CSCI330 4

3

Review: Pros and Cons of Paging

Pros
• Each page can be

Ø located independently
Ø separately protected

• Fixed-size pages and frames
Ø No external fragmentation
Ø No difficult placement

decisions

Cons
• Large table size

Ø ~4MB for 1GB of memory
• That’s for each process!

• maybe internal
fragmentation

Dec 5, 2018 Sprenkle - CSCI330 5

What we’ll assume is being used

V R D Frame …

Review: Multi-Level Page Tables
Virtual Address

1st-level Page d Offset i2nd-level Page p

Points to (base)
frame containing
2nd-level page
table

concat

Physical Address

Insight: VAS is typically
sparsely populated

Idea: every process gets a
page directory
• 1st-level table

Only allocate 2nd-level
tables when the process is
using that VAS region!

Reduce required size of
page table!

Dec 5, 2018 Sprenkle - CSCI330 6

V R D Frame …

4

Review:
Memory Management Unit (MMU)

• When a process tries to
use memory, send the
address to MMU

• MMU will do as much
work as it can
Ø If it knows the answer,

great!
• If it doesn’t

Ø trigger exception (OS
gets control)

Ø consult software table
Dec 5, 2018 Sprenkle - CSCI330 7

Process 1
Process 3

OS

Process 2

Process 1

Text
Data

Stack

OS

Heap

libc code

Combination of
hardware and OS,
working together

In hardware, MMU:
Memory Management
Unit

Review:
Translation Look-aside Buffer (TLB)
• Fast memory mapping cache inside MMU keeps

most recent translations
Ø If key matches, get frame number quickly
ØOtherwise, wait for normal translation

• Add to TLB

“key”

Page p or [page d, page p] or [segment s, page p] Offset i

Match
key

frame

Frame f Offset i
Dec 5, 2018 Sprenkle - CSCI330 8

Higher order bits

Parallel check

5

Virtual Addressing: Under the Hood

raise
exception

probe
page table

load
TLB

probe
TLB

access
physical
memory

access
valid?

page
fault? kill

(lookup and/or)
allocate
frame

page
on

disk?
fetch

from disk

zero-fillload
TLB

start
here

MMU

OS

illegal
reference

legal
reference

yes

no (first reference)

yes

no

miss

hit

Dec 5, 2018 Sprenkle - CSCI330 9

NEXT!

Address Translation: Wish List
• Map virtual addresses to

physical addresses

• Allow multiple processes to
be in memory at once, but
isolate them from each other

• Determine which subset of
data to keep in
memory/move to disk

• Allow the same physical
memory to be mapped in
multiple process VASes

• Make it easier to perform
placement in a way that
reduces fragmentation

Dec 5, 2018 Sprenkle - CSCI330 10

Process 1

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

libc code

6

Background
• Code needs to be in memory to execute
• Entire program code not needed at same time
• Consider ability to execute partially-loaded

program
ØWhy is this possible?

• Consider the characteristics of programs
ØWhat is the impact?

• What does that enable?

Dec 5, 2018 Sprenkle - CSCI330 11

Background
• Code needs to be in memory to execute, BUT entire

program rarely used
Ø Error code, unusual routines, larger-than-necessary data

structures
• Entire program code not needed at same time
• Consider ability to execute partially-loaded program

Ø Program no longer constrained by limits of physical
memory

Ø Each program takes less memory while running à
more programs run at the same time
• Increased CPU utilization and throughput with no increase

in response time or turnaround time
Ø Less I/O needed to load or swap programs into memory

à each user program runs faster
Dec 5, 2018 Sprenkle - CSCI330 12

7

Virtual Memory
• Idea: use physical memory to hold only the portions

of each executing process that are currently being
used
Ø Only part of the program needs to be in memory for

execution
Ø Parts of executing process that are not currently being

used are held on secondary storage until needed.
• Impact:

Ø Logical address space can be much larger than physical
address space

Ø Allows address spaces to be shared by several processes
Ø Less I/O needed to load or swap processes

Dec 5, 2018 Sprenkle - CSCI330 13

“Swapping” Pages to Disk

• Intuition: If a process isn’t using a page, why keep it
in physical memory? Instead, send it to disk and
reclaim that space

• Illusion: memory size is physical memory + disk
(with non-uniform access times)

• Supporting this idea requires:
Ø Identifying where a chunk of memory is (physical

memory or disk?)
Ø Moving data between physical memory and disk

(mechanism)
Ø Algorithm for governing what gets moved to disk and

what stays (policy)

Dec 5, 2018 Sprenkle - CSCI330 14

8

Virtual Memory based on Paging

• Before

ØAll virtual pages were in physical memory.

VM
PMPage

Table

Dec 5, 2018 Sprenkle - CSCI330 15

Virtual Memory based on Paging

• Now
ØPages, if they exist, reside in physical memory or on

disk (or both)
ØWhich pages are on disk? In memory?

VM PMPage
Table

Dec 5, 2018 Sprenkle - CSCI330 16

9

Virtual Memory based on Paging

• Now

ØPages, if they exist, reside in physical memory or on

disk (or both)

ØWhich pages are on disk? In memory?

VM
PMPage

Table

For disk, assume simple lookup structure:

• Key: Process ID, Page Number

• Value: Location of page on disk (or

error if not there)

Dec 5, 2018 Sprenkle - CSCI330 17

Page Table: Revisited
• One table per process
• Table parameters in memory

ØPage table base register
ØPage table size register

• By loading these registers,
the hardware (MMU)
knows where the page table
is for the current process!

Dec 5, 2018 Sprenkle - CSCI330 18

PTBR
PTSR

V R D Frame Perm …

OS maintains the table,
but hardware can access it to help improve performance!

10

Page Table: Revisited
• One table per process
• Table parameters in memory

Ø Page table base register
Ø Page table size register

• Table elements: Page metadata
Ø V: valid bit
Ø R: referenced bit
Ø D: dirty bit

• If page has been modified
Ø Frame: location in physical memory
Ø Perm: access permissions

Dec 5, 2018 Sprenkle - CSCI330 19

PTBR
PTSR

V R D Frame Perm …

Valid bit, checkable by hardware,
says if the page is in physical memory:
• 1: in memory, use frame field

to find where
• 0: not in memory

Memory Access Case 1
• TLB Hit

Ø MMU Hardware resolves address
Ø lookup in TLB only

1. User accesses a virtual address
2. The upper bits / key find a match in TLB hardware cache
3. The resolution is complete, use TLB value

Dec 5, 2018 Sprenkle - CSCI330 20

“key”

Page p or [page d, page p] or [segment s, page p] Offset i

Match
key

frame

Frame f Offset i

Parallel check
Superfast!

11

Memory Access Case 2
• TLB miss: Page table contains valid entry

Ø MMU Hardware resolves address, lookup in TLB and
page table

1.User accesses a virtual address
2.The upper bits/key do not find a match in TLB

hardware cache
3.The MMU hardware knows where the page table is!

Ø MMU indexes into table, finds frame number
4.MMU loads the TLB and completes address

resolution
OS doesn’t have to do anything. Its work was done in

setting up the table in advance. NO context switch!
Dec 5, 2018 Sprenkle - CSCI330 21

Fast!

Valid vs Invalid Pages
• So far: Valid pages

ØMuch better performance-wise
ØNo OS intervention required

• What if a page is invalid, i.e., it’s not in memory?
ØCauses a page fault

Dec 5, 2018 Sprenkle - CSCI330 22

12

Memory Access Case 3
• TLB miss: page table contains invalid entry, disk has the

page
Ø OS resolves address, lookup in TLB, page table, and disk

1. User accesses a virtual address
2. The upper bits/key don’t find a match in TLB hardware

cache
3. The MMU hardware knows where the page table is!

Ø MMU indexes into table, but page table entry is invalid…
4. MMU raises exception—OS gets control of the CPU
5. OS finds faulting page on disk, brings it into memory, and

restarts process from the instruction that faulted

Dec 5, 2018 Sprenkle - CSCI330 23

Next time page is accessed*, should be faster!

SIGSEGV

Memory Access Case 4
• TLB miss: page table contains invalid entry, disk does not

have page
Ø OS can’t resolve address, lookup in TLB, page table, and disk

1. User accesses a virtual address
2. The upper bits / key don’t find a match in TLB hardware

cache
3. The MMU hardware knows where the page table is!

Ø MMU indexes into table, but page table entry is invalid…
4. MMU raises exception – OS gets control of the CPU
5. OS looks for page on disk but not there!

Ø It was never allocated!
6. OS terminates the offending process

Dec 5, 2018 Sprenkle - CSCI330 24

13

Page Faults are Expensive
• Disk: 5-6 orders magnitude slower than RAM

ØVery expensive; but if very rare, tolerable
• Example

ØRAM access time: 100 nsec
ØDisk access time: 10 msec
Øp = page-fault probability
Ø Effective access time: 100 + p� 10,000,000 nsec
Ø If p = 0.1%, effective access time = 10,100 nsec !

Analogy: Most of the time,
to get what you need,
you walk to the Commons.

Occasionally, you have to
walk to Seattle.

We need to be smart about what we send to disk.
Goal: minimize the slowdown.

Dec 5, 2018 Sprenkle - CSCI330 25

Policy Decisions for Virtual Memory
• Placement: Where should we put items in

physical memory?
Ø Irrelevant for page-based systems
ØAny frame is equally good

• Replacement: Which page should we evict from
memory to disk?
ØWhich page do we pick?
Ø Local vs global: Which process should the page come

from?
• Cleaning: for modified (dirty) pages, when to

write them to disk?
Dec 5, 2018 Sprenkle - CSCI330 26

14

Page Replacement
• For now, assume one process and that it has a

fixed number of frames
• Problem specification:

ØA page fault has just occurred
ØAll of the process’s frames are full
Ø To complete the faulting instruction, one of the

existing pages must be evicted to free up a frame

• Eviction: remove the page from a frame
Øput on disk if it isn’t already

• Victim: the page that was chosen for eviction
Dec 5, 2018 Sprenkle - CSCI330 27

?
New page

Page Replacement Goals

1.Minimize page faults

Ø Achieve good temporal locality: reuse of pages

within a short period of time

Ø (Spatial locality: use of close data elements)

2.Easy to implement and low overhead to manage

Ø Don’t need a lot of state

Ø Better if HW can handle most of requests

Dec 5, 2018 Sprenkle - CSCI330 28

15

Candidate Algorithms

• László Bélády – Hungarian computer scientist
who studied this problem for IBM

• Bélády’s Optimal Algorithm (a.k.a. Clairvoyant
algorithm):
Ø Look ahead into the future and evict the page that

won’t be used for the longest time

• Why is this worth considering when we clearly
can’t build it?
ØGives us a benchmark

ØCan’t do any better than this
Dec 5, 2018 Sprenkle - CSCI330 29

Bélády’s Optimal Algorithm

F0
F1
F2

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

* Indicates page fault

Dec 5, 2018 Sprenkle - CSCI330 32

3 frames

time

16

Bélády’s Optimal Algorithm

F0 1*
F1
F2

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Dec 5, 2018 Sprenkle - CSCI330 33

* Indicates page fault

Bélády’s Optimal Algorithm

F0 1* 1
F1 2*
F2

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Dec 5, 2018 Sprenkle - CSCI330 34

* Indicates page fault

17

Bélády’s Optimal Algorithm

F0 1* 1 1
F1 2* 2
F2 3*

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Dec 5, 2018 Sprenkle - CSCI330 35

* Indicates page fault

Bélády’s Optimal Algorithm

F0 1* 1 1 ?
F1 2* 2 ?
F2 3* ?

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Which frame should we evict to make room for page 4?
Why?

A: Frame 0 B: Frame 1 C: Frame 2
Dec 5, 2018 Sprenkle - CSCI330 36

* Indicates page fault

18

Bélády’s Optimal Algorithm

F0 1* 1 1 1
F1 2* 2 2
F2 3* 4*

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Dec 5, 2018 Sprenkle - CSCI330 37

* Indicates page fault

Bélády’s Optimal Algorithm

F0 1* 1 1 1 1
F1 2* 2 2 2
F2 3* 4* 4

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Dec 5, 2018 Sprenkle - CSCI330 38

* Indicates page fault

19

Bélády’s Optimal Algorithm

F0 1* 1 1 1 1 1
F1 2* 2 2 2 2
F2 3* 4* 4 4

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Dec 5, 2018 Sprenkle - CSCI330 39

* Indicates page fault

Bélády’s Optimal Algorithm

F0 1* 1 1 1 1 1 1
F1 2* 2 2 2 2 2
F2 3* 4* 4 3 5*

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Dec 5, 2018 Sprenkle - CSCI330 40

* Indicates page fault

20

Bélády’s Optimal Algorithm

F0 1* 1 1 1 1 1 1 1 1 3* 3 3
F1 2* 2 2 2 2 2 2 2 2 4* 4
F2 3* 4* 4 3 5* 5 5 5 5 5

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Dec 5, 2018 Sprenkle - CSCI330 41

* Indicates page fault

page faults: 7

Candidate Algorithms - Reality
• Can’t know the future of page accesses…

• Straightforward algorithm: FIFO
ØAlways replace the oldest page

Dec 5, 2018 Sprenkle - CSCI330 42

21

FIFO Replacement

F0 1* 1 1
F1 2* 2
F2 3*

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
First three pages start the same way:
fill in free frames.

* Indicates page fault

(can’t see future…)

Dec 5, 2018 Sprenkle - CSCI330 43

FIFO Replacement

F0 1* 1 1 4*
F1 2* 2 2
F2 3* 3

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

* Indicates page fault

Dec 5, 2018 Sprenkle - CSCI330 44

22

FIFO Replacement

F0 1* 1 1 4* 4
F1 2* 2 2 1*
F2 3* 3 3

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

* Indicates page fault

Dec 5, 2018 Sprenkle - CSCI330 45

FIFO Replacement

F0 1* 1 1 4* 4 4
F1 2* 2 2 1* 1
F2 3* 3 3 2*

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

* Indicates page fault

Dec 5, 2018 Sprenkle - CSCI330 46

23

FIFO Replacement

F0 1* 1 1 4* 4 4 5*
F1 2* 2 2 1* 1 1
F2 3* 3 3 2* 2

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

* Indicates page fault

Dec 5, 2018 Sprenkle - CSCI330 47

FIFO Replacement

F0 1* 1 1 4* 4 4 5* 5 5
F1 2* 2 2 1* 1 1 1 1
F2 3* 3 3 2* 2 2 2

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

* Indicates page fault

Dec 5, 2018 Sprenkle - CSCI330 48

24

FIFO Replacement

F0 1* 1 1 4* 4 4 5* 5 5 5
F1 2* 2 2 1* 1 1 1 1 3*
F2 3* 3 3 2* 2 2 2 2

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

* Indicates page fault

Dec 5, 2018 Sprenkle - CSCI330 49

FIFO Replacement

F0 1* 1 1 4* 4 4 5* 5 5 5 5
F1 2* 2 2 1* 1 1 1 1 3* 3
F2 3* 3 3 2* 2 2 2 2 4*

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

* Indicates page fault

Dec 5, 2018 Sprenkle - CSCI330 50

25

FIFO Replacement

F0 1* 1 1 4* 4 4 5* 5 5 5 5 5
F1 2* 2 2 1* 1 1 1 1 3* 3 3
F2 3* 3 3 2* 2 2 2 2 4* 4

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Total: 9 Page faults.

* Indicates page fault

Dec 5, 2018 Sprenkle - CSCI330 51

Analyze FIFO
• Recall our goals:

Ø Minimize page faults
Ø Easy to implement, low overhead to manage

ü Easy to implement BUT
- It exhibits poor locality
- It doesn’t manage memory (frames) well

Dec 5, 2018 Sprenkle - CSCI330 52

26

Bélády’s Anomaly: FIFO

F0
F1
F2
F3

F0 1* 1 1 4* 4 4 5* 5 5 5 5 5
F1 2* 2 2 1* 1 1 1 1 3* 3 3
F2 3* 3 3 2* 2 2 2 2 4* 4

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

9 page
faults

More memory! Should do better, right…?

Dec 5, 2018 Sprenkle - CSCI330 53

Bélády’s Anomaly: FIFO

F0 1* 1 1 1 1 1 5* 5 5 5 4* 4
F1 2* 2 2 2 2 2 1* 1 1 1 5*
F2 3* 3 3 3 3 3 2* 2 2 2
F3 4* 4 4 4 4 4 3* 3 3

F0 1* 1 1 4* 4 4 5* 5 5 5 5 5
F1 2* 2 2 1* 1 1 1 1 3* 3 3
F2 3* 3 3 2* 2 2 2 2 4* 4

Pages Accessed: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

9 page
faults

10!!!
page
faults

Dec 5, 2018 Sprenkle - CSCI330 54

27

Candidate Algorithms - Reality
• Can’t know the future of page accesses…

• Straightforward algorithm: FIFO
ØAlways replace the oldest page

• Classic cache replacement algorithm: LRU
ØReplace the page that hasn’t been used for the

longest time

Dec 5, 2018 Sprenkle - CSCI330 55

LRU Replacement

F0 2* 2 2 2
F1 3* 3 3
F2 1*

Pages Accessed: 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2

* Indicates page fault

First four pages: fill in free frames.

New page sequence!

Dec 5, 2018 Sprenkle - CSCI330 56

28

LRU Replacement

F0 2* 2 2 2 2
F1 3* 3 3 5*
F2 1* 1

Pages Accessed: 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2

Dec 5, 2018 Sprenkle - CSCI330 57

* Indicates page fault

Looking Ahead

• Project 5 due Friday

• Course evaluations due Sunday

Ø 60% completion à 1% extra credit to OS Project

grade

Ø 10% completion increase à additional 1% to OS

Project grade

Dec 5, 2018 Sprenkle - CSCI330 58

