
1

Today
• Memory Management

ØPage Replacement
ØVM Policies: Cleaning

• OS retrospective

Dec 7, 2018 Sprenkle - CSCI330 1

Review
• What are page replacement algorithms?

ØWhat are their goals?
• Why do we need page replacement algorithms?

ØWhen is the algorithm triggered?

Dec 7, 2018 Sprenkle - CSCI330 2

2

Review: Virtual Memory
• Idea: use physical memory to hold only the portions

of each executing process that are currently being
used
Ø Only part of the program needs to be in memory for

execution
Ø Parts of executing process that are not currently being

used are held on secondary storage until needed.
• Impact:

Ø Logical address space can be much larger than physical
address space

Ø Allows address spaces to be shared by several processes
Ø Less I/O needed to load or swap processes

Dec 7, 2018 Sprenkle - CSCI330 3

Review: “Swapping” Pages to Disk

• Intuition: If a process isn’t using a page, why keep it
in physical memory? Instead, send it to disk and
reclaim that space

• Illusion: memory size is physical memory + disk
(with non-uniform access times)

• Supporting this idea requires:
Ø Identifying where a chunk of memory is (physical

memory or disk?)
Ø Moving data between physical memory and disk

(mechanism)
Ø Algorithm for governing what gets moved to disk and

what stays (policy)

Dec 7, 2018 Sprenkle - CSCI330 4

3

Review: Page Table: Revisited

• One table per process

• Table parameters in memory

Ø Page table base register

Ø Page table size register

• Table elements: Page metadata

Ø V: valid bit
Ø R: referenced bit

Ø D: dirty bit

• If page has been modified

Ø Frame: location in physical memory

Ø Perm: access permissions

Dec 7, 2018 Sprenkle - CSCI330 5

PTBR
PTSR

V R D Frame Perm …

Valid bit, checkable by hardware,

says if the page is in physical memory:

• 1: in memory, use frame field

to find where

• 0: not in memory

Review: Virtual Addressing

raise
exception

probe
page table

load
TLB

probe
TLB

access
physical
memory

access
valid?

page
fault? kill

(lookup and/or)
allocate
frame

page
on

disk?
fetch

from disk

zero-fillload
TLB

start
here

MMU

OS

illegal
reference

legal
reference

yes

no (first reference)

yes

no

miss

hit

Dec 7, 2018 Sprenkle - CSCI330 6

NOW!

Demand Paging: bring page into memory (only) when requested

4

Review: Page Faults are Expensive
• Disk: 5-6 orders magnitude slower than RAM

ØVery expensive; but if very rare, tolerable
• Example

ØRAM access time: 100 nsec
ØDisk access time: 10 msec
Øp = page-fault probability
Ø Effective access time: 100 + p� 10,000,000 nsec
Ø If p = 0.1%, effective access time = 10,100 nsec !

Analogy: Most of the time,
to get what you need,
you walk to the Commons.

Occasionally, you have to
walk to Seattle.

We need to be smart about what we send to disk.
Goal: minimize the slowdown.

Dec 7, 2018 Sprenkle - CSCI330 7

Review: Policy Decisions for Virtual Memory
• Placement: Where should we put items in

physical memory?
Ø Irrelevant for page-based systems
ØAny frame is equally good

• Replacement: Which page should we evict from
memory to disk?
ØWhich page do we pick?
Ø Local vs global: Which process should the page come

from?
• Cleaning: for modified (dirty) pages, when to

write them to disk?
Dec 7, 2018 Sprenkle - CSCI330 8

5

Review: Page Replacement Goals

1.Minimize page faults

Ø Achieve good temporal locality: reuse of pages

within a short period of time

Ø (Spatial locality: use of close data elements)

2.Easy to implement and low overhead to manage

Ø Don’t need a lot of state

Ø Better if HW can handle most of requests

Dec 7, 2018 Sprenkle - CSCI330 9

Review: Page Replacement Algorithms
• Can’t know the future of page accesses…

ØBUT Bélády’s Optimal Algorithm – good for
comparisons

• Straightforward algorithm: FIFO
ØAlways replace the oldest page
ØBUT bad locality

• Classic cache replacement algorithm: LRU
ØReplace the page that hasn’t been used for the

longest time

Dec 7, 2018 Sprenkle - CSCI330 10

6

LRU Replacement

F0 2* 2 2 2
F1 3* 3 3
F2 1*

Pages Accessed: 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2

* Indicates page fault

First four pages: fill in free frames.

New page sequence!

Dec 7, 2018 Sprenkle - CSCI330 11

LRU Replacement

F0 2* 2 2 2 2
F1 3* 3 3 5*
F2 1* 1

Pages Accessed: 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2

Dec 7, 2018 Sprenkle - CSCI330 12

* Indicates page fault

7

LRU Replacement

F0 2* 2 2 2 2 2
F1 3* 3 3 5* 5
F2 1* 1 1

Pages Accessed: 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2

Dec 7, 2018 Sprenkle - CSCI330 13

* Indicates page fault

LRU Replacement

F0 2* 2 2 2 2 2 2
F1 3* 3 3 5* 5 5
F2 1* 1 1 4*

Pages Accessed: 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2

Dec 7, 2018 Sprenkle - CSCI330 14

* Indicates page fault

8

LRU Replacement

F0 2* 2 2 2 2 2 2 2
F1 3* 3 3 5* 5 5 5
F2 1* 1 1 4* 4

Pages Accessed: 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2

Dec 7, 2018 Sprenkle - CSCI330 15

* Indicates page fault

LRU Replacement

F0 2* 2 2 2 2 2 2 2 3*
F1 3* 3 3 5* 5 5 5 5
F2 1* 1 1 4* 4 4

Pages Accessed: 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2

Dec 7, 2018 Sprenkle - CSCI330 16

* Indicates page fault

9

LRU Replacement

F0 2* 2 2 2 2 2 2 2 3* 3
F1 3* 3 3 5* 5 5 5 5 5
F2 1* 1 1 4* 4 4 2*

Pages Accessed: 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2

Dec 7, 2018 Sprenkle - CSCI330 17

* Indicates page fault

LRU Replacement

F0 2* 2 2 2 2 2 2 2 3* 3 3 3
F1 3* 3 3 5* 5 5 5 5 5 5 5
F2 1* 1 1 4* 4 4 2* 2 2

Pages Accessed: 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2

Total: 7 Page faults.

Dec 7, 2018 Sprenkle - CSCI330 18

* Indicates page fault

10

LRU Replacement

F0 2* 2 2 2 2 2 2 2 3* 3 3 3
F1 3* 3 3 5* 5 5 5 5 5 5 5
F2 1* 1 1 4* 4 4 2* 2 2

Pages Accessed: 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2

Total: 7 Page faults For this sequence,
• FIFO faults 9 times
• Optimal faults 7 times

Dec 7, 2018 Sprenkle - CSCI330 19

* Indicates page fault

Analyze LRU
• Recall our goals:

Ø Minimize page faults
Ø Easy to implement, low overhead to manage

ü Better locality à fewer page faults
- A lot of bookkeeping

- Look backwards to figure out access

Dec 7, 2018 Sprenkle - CSCI330 20

11

Implementing LRU for Page Replacement
• Take advantage of MMU hardware for performance

Ø Avoid switching to OS execution on every memory access
• For each memory access, MMU must update LRU

information
• Option 1: Timestamp the page

Ø Problem: lots of time lookups, lots of bits to store time in
each page table row

• Option 2: Rearrange queue/list containing order of
page accesses
Ø Problem: now we have hardware chasing pointers?

Dec 7, 2018 Sprenkle - CSCI330 22

An analogy: Replacement for your closet

Dec 7, 2018 Sprenkle - CSCI330 23

12

An analogy: Replacement for your closet

Dec 7, 2018 Sprenkle - CSCI330 24

Got a closet full of clothes but the pack rat in you can't
seem to part with any of them? A user on popular
social news site Reddit offers a simple tip for weeding
out those clothes you don't need.

…
“Putting my clothes in the closet with the hangars
reversed once a year. As I pull clothes out, I reverse
the hanger. Every year I give away any clothes that I
never took out.”

Page Table: Re-Revisited
• One table per process
• Table parameters in memory

Ø Page table base register
Ø Page table size register

• Table elements: Page metadata
Ø V: valid bit
Ø R: referenced bit
Ø D: dirty bit

• If page has been modified
Ø Frame: location in physical memory
Ø Perm: access permissions

Dec 7, 2018 Sprenkle - CSCI330 25

PTBR
PTSR

V R D Frame Perm …

• Use this ONE BIT to approximate LRU
• Easy to do in MMU hardware: When

access a page, MMU sets the bit to 1
• Intuition: has this page been used

recently?

13

Approximating LRU: Clock Algorithm
• Select page that is old and not recently used

Ø Clock (a.k.a. “second chance”) is approximation of LRU
• Hardware support: reference bit

Ø Associated with each page
Ø MMU sets on page access
Ø “Have you been accessed since the last time I looked for

a victim?”
• On page fault, look through the pages in numerical

order (starting from where we left off during last
fault)
Ø If page is referenced recently (ref bit set), unset the

reference bit
Ø If page is not referenced recently, evict it

Dec 7, 2018 Sprenkle - CSCI330 26

Clock Algorithm Model
• Arrange all pages in circle (like a… clock)
• Clock “hand”: next page to consider

Ø Skip over invalid entries, they have no frame
• Page fault: scan forward, starting at hand

Ø if reference bit 0, select page as victim
Øotherwise, set reference bit to 0
Ø advance clock hand to next page
Ø if victim found, break out of loop (else

repeat)
• Hand position preserved across faults

Dec 7, 2018 Sprenkle - CSCI330 27

Pages

14

Clock Example
• Pages accessed: 2, 4, 5, 1, 4, 2, 4

Free frames: 0, 1, 2

V:0
R:0

Page0

Page1

Page2

V:0
R:0

Page3

Page4

V:0
R:0

V:0
R:0

Page5

V:0
R:0

V:0
R:0

Dec 7, 2018 Sprenkle - CSCI330 28

Clock Example

• Pages accessed: 2, 4, 5, 1, 4, 2, 4
Free frames: 0, 1, 2

Dec 7, 2018 Sprenkle - CSCI330 29

V:0
R:0

Page0

Page1

Page2

V:0
R:0

Page3

Page4

V:0
R:0

V:0
R:0

Page5

V:0
R:0

V:0
R:0

• First, use free frames

15

Clock Example
• Pages accessed: 2, 4, 5, 1, 4, 2, 4

Free frames: 0, 1, 2

Dec 7, 2018 Sprenkle - CSCI330 30

• First, use free frames
• Set valid bit because page has a

frame
• Set reference bit because page

was accessed
• Access page 2: page fault

(unavoidable)
• We have a free frame, use it!

V:0
R:0

Page0

Page1

Page2

V:0
R:0

Page3

Page4

V:0
R:0

0 V:1
R:1

Page5

V:0
R:0

V:0
R:0

Clock Example
• Pages accessed: 2, 4, 5, 1, 4, 2, 4

Free frames: 0, 1, 2

Dec 7, 2018 Sprenkle - CSCI330 31

• First, use free frames
• Set valid bit because page has a

frame
• Set reference bit because page

was accessed
• Access page 4: page fault

(unavoidable)
• We have a free frame, use it!

V:0
R:0

Page0

Page1

Page2

V:0
R:0

Page3

Page4

V:0
R:0

0 V:1
R:1

Page5

V:0
R:0

1 V:1
R:1

16

Clock Example
• Pages accessed: 2, 4, 5, 1, 4, 2, 4

Free frames: 0, 1, 2

Dec 7, 2018 Sprenkle - CSCI330 32

• First, use free frames
• Set valid bit because page has a

frame
• Set reference bit because page

was accessed
• Access page 5: page fault

(unavoidable)
• We have a free frame, use it!

V:0
R:0

Page0

Page1

Page2

V:0
R:0

Page3

Page4

V:0
R:0

0 V:1
R:1

Page5

2 V:1
R:1

1 V:1
R:1

Clock Example
• Pages accessed: 2, 4, 5, 1, 4, 2, 4

Free frames: 0, 1, 2

Dec 7, 2018 Sprenkle - CSCI330 33

• Access page 1: page fault.

• We have no free frames, so one
of the pages with a frame needs
to be evicted.

V:0
R:0

Page0

Page1

Page2

V:0
R:0

Page3

Page4

V:0
R:0

0 V:1
R:1

Page5

2 V:1
R:1

1 V:1
R:1

17

Clock Example

• Pages accessed: 2, 4, 5, 1, 4, 2, 4
Free frames: 0, 1, 2

Dec 7, 2018 Sprenkle - CSCI330 34

• Which page should we evict for
page 1, according to the clock
algorithm?
a) 2
b) 4
c) 5

V:0
R:0

Page0

Page1

Page2

V:0
R:0

Page3

Page4

V:0
R:0

0 V:1
R:1

Page5

2 V:1
R:1

1 V:1
R:1

Clock Example
• Pages accessed: 2, 4, 5, 1, 4, 2, 4

Free frames: 0, 1, 2

Dec 7, 2018 Sprenkle - CSCI330 35

• Ignore any invalid page entries,
they don’t have frames, so we
can’t evict them

V:0
R:0

Page0

Page1

Page2

V:0
R:0

Page3

Page4

V:0
R:0

0 V:1
R:1

Page5

2 V:1
R:1

1 V:1
R:1

18

Clock Example
• Pages accessed: 2, 4, 5, 1, 4, 2, 4

Free frames: 0, 1, 2

Dec 7, 2018 Sprenkle - CSCI330 36

• Hand points to a referenced page
• Set ref bit to 0, advance hand, try

again

V:0
R:0

Page0

Page1

Page2

V:0
R:0

Page3

Page4

V:0
R:0

0 V:1
R:0

Page5

2 V:1
R:1

1 V:1
R:1

Clock Example

• Pages accessed: 2, 4, 5, 1, 4, 2, 4
Free frames: 0, 1, 2

Dec 7, 2018 Sprenkle - CSCI330 37

• Hand points to a referenced page
• Set ref bit to 0, advance hand, try

again

V:0
R:0

Page0

Page1

Page2

V:0
R:0

Page3

Page4

V:0
R:0

0 V:1
R:0

Page5

2 V:1
R:1

1 V:1
R:0

19

Clock Example
• Pages accessed: 2, 4, 5, 1, 4, 2, 4

Free frames: 0, 1, 2

Dec 7, 2018 Sprenkle - CSCI330 38

• Hand points to a page with ref bit
0!
• We’ve found our victim

V:0
R:0

Page0

Page1

Page2

V:0
R:0

Page3

Page4

V:0
R:0

0 V:1
R:0

Page5

2 V:1
R:0

1 V:1
R:0

Clock Example

• Pages accessed: 2, 4, 5, 1, 4, 2, 4

Free frames: 0, 1, 2

Dec 7, 2018 Sprenkle - CSCI330 39

• Hand points to a page with ref bit

0!

• We’ve found our victim
• Evict page 2 (mark invalid)

• Assign its old frame (frame 0) to
the faulting page (page 1)

V:0
R:0

Page0

Page1

Page2

V:0
R:0

Page3

Page4

0 V:1
R:1

V:0
R:0

Page5

2 V:1
R:0

1 V:1
R:0

20

Clock Example
• Pages accessed: 2, 4, 5, 1, 4, 2, 4

Free frames: 0, 1, 2

Dec 7, 2018 Sprenkle - CSCI330 40

• Access page 4
• Page 4 is already in memory:

no fault
• OS does nothing!
• MMU hardware sets ref bit to 1

V:0
R:0

Page0

Page1

Page2

V:0
R:0

Page3

Page4

0 V:1
R:1

V:0
R:0

Page5

2 V:1
R:0

1 V:1
R:1

Clock Example
• Pages accessed: 2, 4, 5, 1, 4, 2, 4

Free frames: 0, 1, 2

Dec 7, 2018 Sprenkle - CSCI330 41

• Access page 2: page fault.

• We have no free frames, so one of
the pages with a frame needs to
be evicted.

• Which page will it be?

V:0
R:0

Page0

Page1

Page2

V:0
R:0

Page3

Page4

0 V:1
R:1

V:0
R:0

Page5

2 V:1
R:0

1 V:1
R:1

21

Clock Example
• Pages accessed: 2, 4, 5, 1, 4, 2, 4

Free frames: 0, 1, 2

Dec 7, 2018 Sprenkle - CSCI330 42

• Skip the invalid pages
• Hand points to a referenced page.

• Set ref bit to 0, advance hand, try
again.

V:0
R:0

Page0

Page1

Page2

V:0
R:0

Page3

Page4

0 V:1
R:1

V:0
R:0

Page5

2 V:1
R:0

1 V:1
R:0

Clock Example
• Pages accessed: 2, 4, 5, 1, 4, 2, 4

Free frames: 0, 1, 2

Dec 7, 2018 Sprenkle - CSCI330 43

• Hand points to a page with ref bit
0!
• We’ve found our victim

V:0
R:0

Page0

Page1

Page2

V:0
R:0

Page3

Page4

0 V:1
R:1

V:0
R:0

Page5

2 V:1
R:0

1 V:1
R:0

22

Clock Example
• Pages accessed: 2, 4, 5, 1, 4, 2, 4

Free frames: 0, 1, 2

Dec 7, 2018 Sprenkle - CSCI330 44

• Hand points to a page with ref bit
0!
• We’ve found our victim

• Evict page 5 (mark invalid)
• Assign its old frame (frame 2) to

the faulting page (page 2)

V:0
R:0

Page0

Page1

Page2

V:0
R:0

Page3

Page4

0 V:1
R:1

2 V:1
R:1

Page5

V:0
R:0

1 V:1
R:0

Clock Example
• Pages accessed: 2, 4, 5, 1, 4, 2, 4

Free frames: 0, 1, 2

Dec 7, 2018 Sprenkle - CSCI330 45

• Access page 4
• Page 4 is already in memory:

no fault
• OS does nothing!
• MMU hardware sets ref bit to 1

V:0
R:0

Page0

Page1

Page2

V:0
R:0

Page3

Page4

0 V:1
R:1

2 V:1
R:1

Page5

V:0
R:0

1 V:1
R:1

23

Policy Decisions for Virtual Memory

• Placement: Where should we put items in

physical memory.

Ø Irrelevant for page-based systems. Any frame is

equally good.

• Replacement: Which page should we evict from

memory to disk?

ØWhich page do we pick?

Ø Local vs global: Which process should the page come

from?

• Cleaning: for modified (dirty) pages, when to
write them to disk?

Dec 7, 2018 Sprenkle - CSCI330 46

Page Table: Re-Revisited

• One table per process

• Table parameters in memory

Ø Page table base register

Ø Page table size register

• Table elements: Page metadata

Ø V: valid bit

Ø R: referenced bit

Ø D: dirty bit
• If page has been modified

Ø Frame: location in physical memory

Ø Perm: access permissions

Dec 7, 2018 Sprenkle - CSCI330 47

PTBR
PTSR

V R D Frame Perm …

Has this page been modified?

If so, it no longer matches the contents

on disk.

24

When evicting a page…
• If there are no free frames, we must evict a page

Ø If an identical copy of victim page is on disk, no write
necessary!
• Dirty bit not set

ØBUT, if victim page is dirty (or not on disk at all),
must write it to disk first

• Problem? Not for correctness, but this isn’t
great for performance
ØNot only do we need to read a page from disk, now

we have to write one too!
ØDouble the disk latency…

Dec 7, 2018 Sprenkle - CSCI330 48

Paging Daemon
• “Daemon”: system background process

Ø see Wikipedia for etymology
• Paging daemon: if the system has spare CPU

cycles, check memory
Ø If it looks like a page is likely to be swapped to disk

soon, write it to disk now!
Ø (e.g., page wasn’t referenced recently, clock hand

near its entry)
• Intuition: keep a small reserve of free frames, do

writes in advance of eviction.
Dec 7, 2018 Sprenkle - CSCI330 49

25

Recall old assumption…
• For now, assume one process and that it has a

fixed number of frames

• Reality: multiprogramming! Lots of processes
available. They all need memory.

• How do we decide how much memory to give
each one?

Dec 7, 2018 Sprenkle - CSCI330 50

Multiprogramming

• Having more processes to choose from keeps CPU busy
• TOO many processes causes us to spend all our time

shuffling data to/from disk: thrashing

Multiprogramming level

CPU
utilization

Dec 7, 2018 Sprenkle - CSCI330 51

26

Assigning Frames to Processes…
• Local replacement

Ø Give each process the same amount of memory (#
of frames)

Ø Perform page replacement among a process’s own
frames

• Global replacement
Ø Allow each process to have varying amounts of

memory (# of frames)
Ø Perform page replacement among all frames in the

system

Dec 7, 2018 Sprenkle - CSCI330 52

Assigning Frames to Processes Tradeoffs
• Local replacement:

Ø Fair to all processes – they all get equal memory
ØBUT, some processes are MUCH larger than others
ØWhat size do we choose?

• Global replacement:
ØBetter reflects diversity in process memory needs
ØBUT, processes are now competing with one another

• one bad process might gobble up all the memory and
ruin everything

Dec 7, 2018 Sprenkle - CSCI330 53

27

Hybrid Approach
• Processes don’t directly take pages from one

another (like local)
• OS examines processes to see if they’re using the

memory they’ve been given
Ø If not, reclaim some for others (like global)

• Idealized solution: Denning’s “working set”
• More realistic: Page fault frequency

Dec 7, 2018 Sprenkle - CSCI330 54

Working Set
• Intuition: the set of pages a process is actually

using right now
Ø so that we know the number of frames it needs to

store them
• Definition: the number of pages referenced in

the interval (t, t - w)
• Few (no?) commercial systems track working set

precisely due to cost of doing so
ØBUT an important theoretical concept

Dec 7, 2018 Sprenkle - CSCI330 55

28

Working Set: Challenges
• Must timestamp pages in working set to identify

set size
• Must determine time interval w

• Bottom line: working set is interesting as an
abstraction, but not reasonable to build

Dec 7, 2018 Sprenkle - CSCI330 56

Page Fault Frequency

• If fault frequency too high, working set not present
Ø Give process more frames

• If fault frequency too low, resident set too large
Ø Take away frames

Dec 7, 2018 Sprenkle - CSCI330 58

Page
fault
freq

of frames

upper threshold

lower threshold

29

Summary
• Virtual memory effectively extends main

memory by swapping to disk
• Disk is slow and must be used judiciously
• Selecting which pages to swap (page

replacement) is a challenging problem
• Real systems typically implement

approximations of idealized policies (e.g., clock
vs. LRU)

Dec 7, 2018 Sprenkle - CSCI330 59

OS RETROSPECTIVE

Dec 11, 2015 Sprenkle - CSCI330 60

30

Why Study Operating Systems?
• Understanding the OS helps you write better code

Ø Learn how to manage complexity through appropriate
abstractions

• Understand a wide range of system designs and
tradeoffs of those designs
Ø Performance vs. simplicity, HW vs. SW, etc

• What should be in the hardware? In the OS? In the user
applications?
Ø What are the tradeoffs of these decisions?

Ø Design tradeoffs made in the past do not necessarily
apply now

Ø Those made now will not necessarily apply in the future
• Operating Systems are everywhere!

Sept 7, 2018 Sprenkle - CSCI330 61

Course Objectives
• to demystify the interactions between the

software you have written in other courses and
hardware,

• to familiarize you with the issues involved in the
design and implementation of modern operating
systems,

• and to explain the more general systems
principles that are used in the design of all
computer systems

Sept 7, 2018 Sprenkle - CSCI330 62

31

Student Learning Objectives
• Describe the importance of abstraction in modern systems
• Differentiate between policy and mechanism
• Explain how operating systems manage concurrent

processes including the complete life-cycle of user
processes, threads, process synchronization, and deadlock
avoidance

• Evaluate the suitability of algorithms used for process
scheduling, memory allocation, and disk access for various
use cases

• Understand how operating systems manage physical and
virtual memory including segmentation and paging

• Develop programs that emulate or interact with operating
system code

Sept 7, 2018 Sprenkle - CSCI330 63

Topics We Could Have Covered
• Storage

ØDisk allocation, caching
ØNFS (distributed file systems)

• Memory management
ØMore policies (prefetching, freeing)

• I/O
• Security

Dec 7, 2018 Sprenkle - CSCI330 64

32

WHERE DO WE GO FROM HERE?

Dec 11, 2015 Sprenkle - CSCI330 65

What is a distributed system?

"A distributed system is one in which the
failure of a computer you didn't even know
existed can render your own computer
unusable." -- Leslie Lamport

Leslie Lamport
2013 Turing Award Winner

Dec 9, 2015 Sprenkle - CSCI330 66

33

Looking Ahead
• Final Exam

Ø Take Home Question – typed, PDF
• 20% of final exam

Ø In-class portion
• Evaluations – due Sunday

ØAdd EC points to OS project grade, worth 50% of
course grade

• Project due today
• Office hours

ØMonday and Tuesday afternoon and by appointment
Dec 7, 2018 Sprenkle - CSCI330 67

