
Objectives
•Servlets Review
•Handling Multiple Requests
• JSPs
•Web Application Code Organization
•Project

May 7, 2024 Sprenkle - CS335 1

Servlets Review
• What happens when a web application starts?

ØWhat is the servlet life cycle?
• Init parameters

ØWhy do we use init parameters?
ØWhere are init parameters defined?
ØHow do we access a servlet’s init parameter?

• How can we save state across multiple requests
from a user?
ØWhat are the pros and cons of each?

• How are parameters different from attributes?
May 7, 2024 Sprenkle - CS335 2

Review: Servlet Life Cycle in
Web Application Server (WAS)
1. Web application server

creates one instance of servlet
ØCalls init method of servlet created

2. As requests come in, WAS calls service method
of appropriate servlet
ØIn turn, servlet calls appropriate doMethod

3. When web application server shuts down, calls
destroy method of each servlet

May 7, 2024 Sprenkle - CS335 3

Web Application Server

SurveyServlet

Parameter
Servlet

Handling State across Multiple Requests
•Hidden parameters

ØJust hides info – client can access and change

•Cookies
ØPassed back and forth between the clients and

servers
ØStored on the client side -- unreliable

•Session state
ØStored on the server, times out

May 7, 2024 Sprenkle - CS335 4

See yesterday’s slides
for fuller discussion

Review: Parameters vs Attributes

Parameters

• Represent data set in a request
OR configuration parameters for a
servlet

• Lookup by name
• Must be a String

Attributes

• Represent information stored on
the server

• Look up by name
• Can be any data type

May 7, 2024 Sprenkle - CS335 5

HANDLING MULTIPLE REQUESTS
Advanced Topic

May 7, 2024 Sprenkle - CS335 6

Handling Multiple Clients
•Web servers get lots of requests from users
•Web server handles multiple

requests at a time by executing
multiple threads
ØApproximately 1 thread/request

May 7, 2024 Sprenkle - CS335 7

Web Application
Server

Program

OS Background: Processes

May 7, 2024 Sprenkle - CS335 8

When a program launches, the Operating System creates a
process to run it, with a main thread to execute the code and a
virtual memory to store the running program’s code and data.

data

code (“text”)
constants

initialized data Process

Thread

sections
segments

virtual memory

Unix: fork/exec

Processes and Threads

May 7, 2024 Sprenkle - CS335 9

+ +
user ID

process ID
parent PID
sibling links

children
current directory

Virtual Address Space
(VAS) Process Control Block (PCB)

resources

Thread(s)

stack

Each process has at least one thread
(the “main thread”) bound to the VAS.
Each thread has a stack addressable in
the VAS, i.e., has its own state (where
in program, state from
executing program).
The kernel can suspend/restart a thread
wherever and whenever it wants.

The OS maintains some
kernel state for each
process in the kernel’s
internal data structures: e.g.,
a file descriptor table, links to
maintain the process tree,
current directory, and a place
to store the exit status.

The address space is a
private name space for a set
of memory segments used
by the process.
The kernel must initialize the
process virtual memory for
the program to run.
To process, looks like has
access to all the memory.

Multiple Clients
• Web servers get lots of requests from users
• Web server handles multiple

requests at a time by executing
multiple threads
ØApproximately 1 thread/request

• Request from blue user is handled by blue thread
ØIt’s on line 68 right now

• Similarly, the green user’s request is on line 50
May 7, 2024 Sprenkle - CS335 10

Web Application
Server

LOC: 50 LOC: 68

Multiple Clients
•Web servers get lots of requests from users
•Web server handles multiple

requests at a time by executing
multiple threads
ØApproximately 1 thread/request

•Benefit: faster response times to users

May 7, 2024 Sprenkle - CS335 11

Web Application
Server

⇒Need to ensure sure that threads overlap
in ways that do not break the application

Example Scenario
•SurveyServlet stores the results of the survey

in a file on the server
•When >1 client connects to the server at one

time, server handles both clients concurrently
Ø>1 thread can execute SurveyServlet
Ø>1 thread can read/modify file at one time
ØCan lead to inconsistent data!

May 7, 2024 Sprenkle - CS335 12

SurveyServlet Implementation

• Operations of each thread can overlap
May 7, 2024 Sprenkle - CS335 13

SurveyServlet?animal=dog

SurveyServlet?animal=cat

Web Application
Server

file

// read file
// update local array
// write file
// print results

// read file
// update local array
// write file
// print results

Thread Interleaving (No Concurrency)

May 7, 2024 Sprenkle - CS335 14

SurveyServlet?animal=dog

SurveyServlet?animal=cat

Web Application
Server

file

// read file
// update local array
// write file
// print results
// read file
// update local array
// write file
// print results

Bad Interleaving

May 7, 2024 Sprenkle - CS335 15

// read file
// update local array
// read file
// update local array
// write file
// print results
// write file
// print results

What happens in this case?

Loses blue’s vote

SurveyServlet?animal=dog

SurveyServlet?animal=cat

Web Application
Server

file

Critical Section
•Sections of code that should happen

uninterrupted or atomically
ØOnly one thread can execute at a time

•What is the critical section in this code?

May 7, 2024 Sprenkle - CS335 16

// read file
// update local array
// write file
// print results

Critical Section
•Sections of code that should happen

uninterrupted or atomically
ØOnly one thread can execute at a time

•What is the critical section in this code?
ØThe shared file must be read and written atomically

•Writes to shared data
cause trouble

May 7, 2024 Sprenkle - CS335 17

// read file
// update local array
// write file
// print results

210 in 335
•Even if only one Java statement in critical section,

synchronize it!
•One high-level Programming Language statement

often translates into multiple VM language
statements
ØPrevent interruption at low level

May 7, 2024 Sprenkle - CS335 18

count++; Retrieve count
Add 1 to count
Store count

High-level: Virtual Machine level:

Synchronization Mechanisms
•Synchronized classes
•Synchronized methods
•Synchronized statements
•Expense associated with each of these

ØBut without it, get wrong or inconsistent answers!

May 7, 2024 Sprenkle - CS335 19

Synchronized Methods
• When a thread calls a synchronized method of an

object, that object becomes locked
ØExactly 1 shared key for an object

• Example: restroom key at a gas station
ØThread must have key to enter an object’s synchronized

method
ØWith key, unlock the door to synchronized method you want to

enter
ØWhen another thread attempts to enter a synchronized

method, it cannot get the key, so it blocks
• Blocking thread waits for the key

May 7, 2024 Sprenkle - CS335 20

Synchronized Statements
•Every Java Object has an implicit lock or

monitor
Øwait, notify, notifyAll methods

•Synchronize a block of code on an Object

May 7, 2024 Sprenkle - CS335 21

synchronized (this) {
 …
}

synchronized (object) {
 …
}

If this doesn’t need to be
synchronized because object is
independent of other data in this

Finer granularity than methods

General Rules
•Need to synchronize access to shared resources

ØInstance variables, Files
ØSessions
ØDon’t need to worry about local variables

•Want to limit size of critical section
ØLarger section reduces amount of concurrency

•Programmer must be very careful not to write
programs in which deadlock can occur
ØCareful synchronization: keep it simple

May 7, 2024 Sprenkle - CS335 22

Synchronizing SurveyServlet
• Identify the shared variables
• Identify when shared variables are written, when

they are read
• Identify the critical section
•How would you synchronize?

May 7, 2024 Sprenkle - CS335 23

Aside: SurveyServlet
•Should periodically write the survey results but

not hold up requests
ØSeparate thread to write results

May 7, 2024 Sprenkle - CS335 24

Synchronization Mechanisms
• In code for in-memory state

ØSynchronized classes
ØSynchronized methods
ØSynchronized statements

•Alternative: database (later!)
ØHandles synchronization on persistent data

•Expense associated with each of these
ØBut without it, get wrong or inconsistent answers!

May 7, 2024 Sprenkle - CS335 25

JAVASERVER PAGES (JSPS)

May 7, 2024 Sprenkle - CS335 26

Discussion

May 7, 2024 Sprenkle - CS335 27

What made writing servlets difficult?

Motivation: JavaServer Pages (JSPs)
•Simplify web application development
•Separate UI from backend code

ØSeparate presentation layer

•Difficult to write HTML in print statements

May 7, 2024 Sprenkle - CS335 28

Moving to here

JavaServer Pages (JSPs)
•Merge HTML and Java

ØSeparate static HTML from dynamic
ØMake HTML templates, fill in dynamic content
ØEncourages separation of tasks

•Web application server compiles JSPs into servlet
code
ØClean and efficient

•Easier to develop, deploy, modify scripted pages
ØHow much trouble did you have with HTML in

Strings?
May 7, 2024 Sprenkle - CS335 29

JSP Syntax: Expression
•Enclosed code in <%= %>
•Are evaluated and turned into a String

May 7, 2024 Sprenkle - CS335 30

<html>
<body>
<p>
Hello! The time is now <%= new java.util.Date() %>
</p>
</body>
</html>

Expression

Evaluated, turned into a String

JSP Syntax: Scriptlet

May 7, 2024 Sprenkle - CS335 31

<html>
<body>
<%
 // This is a scriptlet. The "date" variable
 // we declare here is available in the
 // embedded expression later on.
 java.util.Date date = new java.util.Date();
%>
<p>
Hello! The time is now <%= date %>
</p>
</body>
</html>

What is the syntactic difference between a scriplet and an expression?

Example: SurveyServlet Output as a JSP

May 7, 2024 Sprenkle - CS335 32

<%
 for (int i = 0; i < animalNames.length; i++) {
 %>
 <tr>
 <td><%=animalNames[i]%></td>
 <td><%=votes[i]%></td>
 <td><%=formattedPercentages[i]%></td>
 <%
 totalVotes += votes[i];
 %>
 </tr>
 <%
 }
 %>

Use the JSP terminology to
describe what this code does

Example: SurveyServlet Output as a JSP

May 7, 2024 Sprenkle - CS335 33

<%
 for (int i = 0; i < animalNames.length; i++) {
 %>
 <tr>
 <td><%=animalNames[i]%></td>
 <td><%=votes[i]%></td>
 <td><%=formattedPercentages[i]%></td>
 <%
 totalVotes += votes[i];
 %>
 </tr>
 <%
 }
 %>

To be displayed at end

JSP Directives
•Page Directive

Ø Java files to import (like import statement in Java)
<%@ page import="java.util.*,java.text.*" %>
<%@ page import="ourcode.MyClass"%>

• Include Directive
Ø Include contents of another file: JSP, HTML, or text
ØExample: include site’s common headers or footers
<%@ include file="header.jsp" %>

May 7, 2024 Sprenkle - CS335 34

JSP Variables
•By default, JSPs have some variables

ØNot explicitly declared in the file
ØHttpServletRequest request
ØHttpServletResponse response
ØHttpSession session

• JSPs can access request parameters, session data

May 7, 2024 Sprenkle - CS335 35

These variable names
must be used

JSP Declarations
• For instance variables and methods

• We won’t do too much of this
Ø Let servlets do the work

May 7, 2024 Sprenkle - CS335 36

<%!
 private ArrayList users;

 public void jspInit() {
 // on start up: set up
 }
 public void jspDestroy() {
 // on shut down: clean up
 }
%>

Web Application Architecture

May 7, 2024 Sprenkle - CS335 37

JSP

Java Servlets

Java Classes
(Model)

Client

Server-side

DataStore

HTML With
Dynamic Parts

• Heavy lifting [code] of requests
• Forward to JSPs

Communicating Between JSPs and Servlets: Attributes
• Attributes

Ø Name/Value pairs
Ø Values are Objects

• 3 types of attributes
Ø Differ in where they are stored/their context/their lifetimes

• Request
• Session
• Application – for the whole application

• Typical use:
Ø Set attribute in Servlet
Ø Get attribute in JSP

May 7, 2024 Sprenkle - CS335 38

Application

Servlet JSP

Web Application Server

Communicating Between Servlets and JSPs:
Login Example

May 7, 2024 Sprenkle - CS335 39

Login
Servlet

login.jsp

welcome.jsp

Client
Server-side

• Check user name/password
• Set authenticated or error attribute
• Forward to welcome.jsp or login.jsp

• Form to login
1

2

User makes
login request

Communicating Between Servlets and JSPs:
Login Example

May 7, 2024 Sprenkle - CS335 40

Login
Servlet

login.jsp

welcome.jsp

Client

Server-side

• Check user name/password
• Set authenticated or error attribute
• Forward to welcome.jsp or login.jsp

• Form to login

1

2

User makes
login request

Communicating Between Servlets and JSPs:
Login Example

May 7, 2024 Sprenkle - CS335 41

Login
Servlet

login.jsp

welcome.jsp

Client

Server-side

• Check user name/password
• Set authenticated or error attribute
• Forward to welcome.jsp or login.jsp

• Get error
attribute,
display error
message

• Form to login

• Get, check authenticated attribute
• Display user’s options

2

User makes
login request

error
authenticated

Forwarding Requests from Servlet
•HttpServletRequest’s
getRequestDispatcher method
ØReturns a RequestDispatcher object

• Can use RequestDispatcher’s include method
similarly

May 7, 2024 Sprenkle - CS335 42

request.getRequestDispatcher("welcome.jsp").
 forward(request, response);

The name of the resource to forward to

Protecting JSPs
• If there are JSPs that you don’t want users to be

able to access directly by typing in the URL, put
them in the WEB-INF directory
ØWeb application server blocks access to the JSP
ØDon’t need code to check authorization again
•Only get to JSP through a servlet that checks

authorization
•Forward requests from a servlet to the JSP by

including WEB-INF in the URI
May 7, 2024 Sprenkle - CS335 43

Using the WEB-INF Directory
•Example: User shouldn’t be able to access

petResponse.jsp directly

May 7, 2024 Sprenkle - CS335 44

request.getRequestDispatcher("WEB-INF/petResponse.jsp").
 forward(request, response);

Adding a JSP to SurveyServlet
•Separate heavy lifting from the HTML
•Think of JSP as a template

ØWhat is static about the response page?
ØWhat is dynamic?

•Servlet will handle most of the code

May 7, 2024 Sprenkle - CS335 45

Look at code

Trick: Ternary Operator
•Alternative if-then-else syntax
•Returns a value
•Example:

ØAssign minVal value a if condition is true, b if condition is
false

May 7, 2024 Sprenkle - CS335 46

minVal = (a < b ? a : b);

Condition

Ternary Operator in JSP
•Allows for more concise code

May 7, 2024 Sprenkle - CS335 47

<input type=text name="username"
value="<%= userName != null ? userName : ""%>">

Condition Returned if true

Returned if false

HttpServletRequest
•getContextPath()

ØReturns the portion of the request URI that indicates
the context of the request.

•Example with various Request methods

May 7, 2024 Sprenkle - CS335 48

http://example.com:8080/app/dirpath/index.jsp?cat=2&cat=5

getScheme() à "http"
getServerName() à "example.com"
getServerPort() à 8080

getContextPath() à "/app"
getServletPath() à "/dirpath"
getPathInfo() à "/index.jsp"
getParameter("cat") à "2"
getParameterValues("cat") à {"2", "5"}

Use in JSP

May 7, 2024 Sprenkle - CS335 49

<a href="<%=request.getContextPath()%>">
Main Page

Synthesis
•Why JSPs?
•How should you organize your code?

ØWhat code should be in servlets?
ØWhat code should be in JSPs?
ØHow do you communicate between them?

May 7, 2024 Sprenkle - CS335 50

TODO
•Lab 6 - JSPs
•Web Quality Attributes – Reading
•Exploring Ancient Graffiti Project

May 7, 2024 Sprenkle - CS335 51

