
Objectives
•Review: JavaScript
•Quality Attributes of Web Software
• Introduction to Relational Databases, SQL
• JDBC

May 9, 2024 Sprenkle - CSCI335 1

JavaScript review
• True or False: JavaScript is just like Java
• What is the role of JavaScript in web applications?
• How do you declare a variable? (2 ways)
• How do you write text to the web page?
• What is the syntax for functions?
• What are some examples of events?
• How do you access a particular element in a document?

ØWhat are some ways to change that element?
• True or False: Validating a form on the client side is just as

good as validating it on the server side

May 9, 2024 Sprenkle - CSCI335 2

Form Validation

Client-side

Pros
• Catches errors earlier
• Reduces network traffic

Ø no need to go to the server if

Cons
• User can bypass client-side

validation (e.g., turn off JavaScript
or not use the browser)

Server-Side

• The buck stops here

May 9, 2024 Sprenkle - CSCI335 3

Why You Need Server-Side Validation
My partner -- the server-side web developer -- was
using a web application, as a client/user. The
application wouldn't let him do something because
he hasn't paid the bill for this month. (It's June 1,
and the automatic withdrawal happens later in the
month.) The buttons were disabled. He edited the
HTML, removing the disabled attribute from the
button, and completed the transaction.

May 9, 2024 Sprenkle - CSCI335 4

Quality Attributes
• What are quality attributes?
• How are web applications different from “traditional”/desktop

applications?
• React to “For most application types, commercial developers

have traditionally had little motivation to produce high-quality
software.”

• What are differences between 2002 (when article was
originally published) and now?
Ø N.B.: still a highly cited paper

• Let’s add another point in the comparison: video games,
mobile apps
Ø Compare mobile apps with web and desktop

May 9, 2024 Sprenkle - CSCI335 5

Comparison of Applications

May 9, 2024 Sprenkle - CSCI335 6

Attribute Traditional Web Applications
Location On clients Client, Server (& more)

Languages Java, C, C++, etc. Traditional languages and Scripting
languages, HTML, Other languages

Technologies Network, DB, Cloud

Development
Team

Programmers, graphics
designers, usability
engineers

Programmers, graphics designers,
usability engineers, Network, DB,
Server/Cloud experts

Economics Time to market Returning customers; later but
better

Releases Infrequent (~monthly),
expensive Frequent (~days), inexpensive

Quality Attributes

May 9, 2024 Sprenkle - CSCI335 7

Attribute Web Applications
Reliability Must work, or go to another site

Usability Must be usable, or go to another site

Security Protect user data, information

Availability 24/7/365

Scalability Thousands of requests per second, more?

Maintainability Short maintenance cycle, frequent updates

Time-to-market Later but better is okay

Discussion
•What are examples of sites that you used to use

but you switched because something better
came along?
ØHow easy is it to switch now?

May 9, 2024 Sprenkle - CSCI335 8

DATABASES AND SQL

May 9, 2024 Sprenkle - CSCI335 9

Web Application
Server

Web Application Architecture Overview

May 9, 2024 Sprenkle - CSCI335 10

DB or XML
or text files

Servlets,
JSPs

Automatically generate
UI (HTML),

Handle user requests
Data structures,
helper classes

Datastore

Us
er

 In
te

rfa
ce

(H
TM

L,
 C

SS
, J

av
aS

cr
ip

t)

Application
State

Java
Model/

Backend

Database Overview
•Store data in such a way to allow efficient

storage, search, and update
•Relational Data Model - currently most popular

type of database
ØMany vendors: PostgreSQL, Oracle, MySQL, DB2,

MSSQL
ØData is stored in tables
ØAttributes: column names (one word)
ØOften contain primary key:

a set of columns that uniquely identify a row

May 9, 2024 Sprenkle - CSCI335 11

DBMS Popularity

May 9, 2024 Sprenkle - CSCI335 12

Ranking based on web site mentions, searches, questions,
job offers, professional profiles, social network mentions

https://db-engines.com/en/ranking

https://db-engines.com/en/ranking

x

•Free, open source
•Evolved from UC Berkeley Database Ingres
•Has more advanced features than MySQL

•The DBMS that we’ll use!

May 9, 2024 Sprenkle - CSCI335 13

Terminology: Database vs
Database Management System

•When I say “database”, I could be referring to
either the running DBMS (which can hold more
than one database) or a specific database

May 9, 2024 Sprenkle - CSCI335 14

Example Students Table
• id is the primary key
•What are the attributes?

May 9, 2024 Sprenkle - CSCI335 15

id lastName firstName gradYear major

10011 Aaronson Aaron 2025 CSCI

43123 Brown Allison 2024 ENGL

Example Students Table
• id is the primary key
•What are the attributes?

May 9, 2024 Sprenkle - CSCI335 16

id lastName firstName gradYear major

10011 Aaronson Aaron 2025 CSCI

43123 Brown Allison 2024 ENGL

Attributes

Courses Table
•Primary key is (Department, Number)

ØAs a group, these uniquely identify a row

May 9, 2024 Sprenkle - CSCI335 17

department number name description

CSCI 101 Survey of Computer
Science A survey of …

CSCI 111 Fundamentals of
Programming I

An introduction
to …

SQL: STRUCTURED QUERY LANGUAGE

May 9, 2024 Sprenkle - CSCI335 18

SQL: Structured Query Language
•Standardized language for manipulating and

querying relational databases
ØMay be slightly different depending on DB vendor

•Pronounced “S-Q-L” or “Sequel”

May 9, 2024 Sprenkle - CSCI335 19

SQL: Structured Query Language
•Reserved words are not case-sensitive

ØI tend to write them in all-caps and bold to distinguish
them in the slides

ØTables, column names - may be case sensitive

•Commands end in ;
ØCan have extra white space, new lines in commands
ØEnd when see ;

•Represent string literals with single quotes ''
May 9, 2024 Sprenkle - CSCI335 20

SELECT Command
• Queries the database
• Returns a result—a virtual table
• Syntax:

ØColumns, tables separated by commas
ØCan select all columns with *
ØWhere clause specifies constraints on what to select from

the table

May 9, 2024 Sprenkle - CSCI335 21

SELECT column_names
FROM table_names [WHERE condition];

Optional

SELECT Examples
• SELECT * FROM Students;

• SELECT lastName, major FROM Students;

May 9, 2024 Sprenkle - CSCI335 22

id lastName firstName gradYear major

10011 Aaronson Aaron 2025 CSCI

43123 Brown Allison 2024 ENGL

lastName major

Aaronson CSCI

Brown ENGL

Virtual Tables

WHERE Conditions
• Limits which rows you get back
• Comparison operators: =, >, >=, <, <=, <>
• Can contain AND for compound conditions
•LIKE matches a string against a pattern

ØWildcard: % , matches any sequence of 0 or more
characters

•IN : match any
•BETWEEN: Like comparison using AND, inclusive

May 9, 2024 Sprenkle - CSCI335 23

SELECT Examples
• What do these select statements mean? (What data question

would they answer?)
Ø SELECT * FROM students WHERE major='CSCI';

Ø SELECT firstName, lastName
FROM students WHERE major='CSCI'
AND gradYear=2024;

Ø SELECT firstName, lastName
FROM students WHERE major='CSCI'
AND gradYear<>2024;

Ø SELECT lastName FROM students
WHERE firstName LIKE 'Eli%';

May 9, 2024 Sprenkle - CSCI335 24

SELECT Examples
• What do these select statements mean?

ØSELECT lastName FROM students WHERE
major IN ('CSCI', 'PHYS', 'MATH');

ØSELECT lastName FROM students
WHERE major NOT IN ('CSCI', 'PHYS',
'MATH');

ØSELECT firstName FROM students
WHERE gradYear BETWEEN 2024 AND 2026;

May 9, 2024 Sprenkle - CSCI335 25

Set vs Bag Semantics
•Data structures review

May 9, 2024 Sprenkle - CSCI335 26

Set vs Bag Semantics
•Bag

ØDuplicates allowed
ØNumber of duplicates is significant
ØUsed by SQL by default

•Set
ØNo duplicates
ØUse keyword DISTINCT

May 9, 2024 Sprenkle - CSCI335 27

Set vs Bag

May 9, 2024 Sprenkle - CSCI335 28

SELECT lastName
FROM Students;

SELECT DISTINCT lastName
FROM Students;

lastName
Smith
…
Smith
Jones
Jones

lastName
Smith
Jones

Aggregates
•Standard SQL aggregate functions: COUNT,
SUM, AVG, MIN, MAX

•Can only use in the SELECT part of query

•Example
ØSELECT COUNT(*), AVG(GPA)
FROM students WHERE gradYear=2024;

May 9, 2024 Sprenkle - CSCI335 29

ORDER BY
•Last operation performed, last in query
•Orders:

ØASC = ascending
ØDESC = descending

•Example
ØSELECT firstName, lastName
FROM Students WHERE gradYear=2024
ORDER BY GPA DESC;

May 9, 2024 Sprenkle - CSCI335 30

Majors Table
•Let’s introduce a new table to keep track of

majors
•Primary Key: id

May 9, 2024 Sprenkle - CSCI335 31

id name department
1 ART-BA ART
2 ARTH-BA ART

Changes Students Table
•Use an id to identify major (primary key)

May 9, 2024 Sprenkle - CSCI335 32

id name department
1 ART-BA ART
2 ARTH-BA ART

id last Name first Name gradYear majorID
10011 Aaronson Aaron 2021 123
43123 Brown Allison 2022 157

Majors:

Students:
Foreign Key

Join Queries

• Example:
ØPerforming a select on 3

tables, each with two rows
Ø SELECT * FROM A, B, C;

ØResults in this virtual table:

May 9, 2024 Sprenkle - CSCI335 33

A1
A2

B1
B2

C1
C2

A1 B1 C1
A1 B1 C2
A1 B2 C1
A1 B2 C2
A2 B1 C1
A2 B1 C2
A2 B2 C1
… … …

Does a cross product of the joined tables

A B C

JOIN Queries
• Join two tables on an attribute

May 9, 2024 Sprenkle - CSCI335 34

SELECT lastName, name
FROM Students, Majors
WHERE Students.majorID=Majors.id;

id name department

1 ART-BA ART

2 ARTH-BA ART

… … …

id lastName firstName gradYear majorID

10011 Aaronson Aaron 2025 123

43123 Brown Allison 2024 157

… … … … …

Majors:

Students:

Join Queries: Breaking it down

May 9, 2024 Sprenkle - CSCI335 35

Id Nam
e

Dept Id Lna
me

Fna
me

…

M1 S1

M1 S2

M1 …

M1 Sn

M2 S1

M2 S2

M2 …

M2 Sn

… …

Does a cross product of the joined tables

SELECT lastName, name
FROM Students, Majors;

JOIN Queries: Breaking it down
2) Keep only the rows that satisfy the WHERE
clause
3) Keep only the requested columns

May 9, 2024 Sprenkle - CSCI335 36

SELECT lastName, name
FROM Students, Majors
WHERE Students.majorID=Majors.id;

lastName name

Aaronson CSCI

Brown ENGL

From Students From Majors

JOIN Queries
•What if two joined tables have the same column

name?
ØAdd the table name and a . to the beginning of the

column, i.e., TableName.columnName

May 9, 2024 Sprenkle - CSCI335 37

SELECT Students.lastName, Majors.name
FROM Students, Majors
WHERE Students.majorID=Majors.id;

What if Students Have Multiple Majors?
•We don’t necessarily want to add another

column to Students table
ØWhat if student has 3 majors? Handling 2 minors?

•Solution: Create StudentsToMajors table:

•Example of Many to Many Relationship
May 9, 2024 Sprenkle - CSCI335 38

studentID majorID
435 243
435 232

Primary Key: (studentID, majorID)

Foreign Keys
from Students, Majors Tables

JOIN Queries
•To find the students’ majors with this new
StudentsToMajors table, we would query

•Creates cross product of all 3 tables, then keep
only the rows that satisfy the WHERE clause, and
only include the specified columns

May 9, 2024 Sprenkle - CSCI335 39

SELECT Students.lastName, Majors.name
FROM Students, Majors, StudentsToMajors
WHERE Students.id=StudentsToMajors.studentID AND
Majors.id = StudentsToMajors.majorID;

INSERT Statements
•You can add rows to a table

•Preferred Method: include column names
ØDon’t depend on order

May 9, 2024 Sprenkle - CSCI335 40

INSERT INTO Majors VALUES
(354, 'BioInformatics-BS', 'CSCI');

INSERT INTO Majors (id, name, department)
VALUES (354, 'BioInformatics-BS', 'CSCI');

Assumes filling in all values, in column order

INSERT Statements
•Automatically create ids

• If table is set up appropriately, let the DB handle
creating unique ids:

May 9, 2024 Sprenkle - CSCI335 41

INSERT INTO Majors (id, name, department)
VALUES (nextval('majors_sequence’),
'Bio-Informatics-BS', 'CSCI');

INSERT INTO Majors (name, department)
VALUES ('Bio-Informatics-BS', 'CSCI');

UPDATE Statement
•You can modify rows of a table
•Use WHERE condition to specify which rows to

update
•Example: Update a student’s married name

•Example: Update all first years to undeclared

May 9, 2024 Sprenkle - CSCI335 42

UPDATE Students SET
LastName='Smith-Jones' WHERE id=12;

UPDATE Students SET majorID=345
WHERE gradYear=2027;

DELETE Statement
•You can delete rows from a table

•Example

May 9, 2024 Sprenkle - CSCI335 43

DELETE FROM table [WHERE condition];

DELETE FROM EnrolledStudents WHERE
hasPrerequisites=False AND course_id=456;

Using a Database
•DBMS: Database management system
•Using PostgreSQL in this class

ØFree, open source

•Slight differences in syntax between DBMSs
•DBMS can contain multiple databases

ØNeed to specify which DB you want to use

May 9, 2024 Sprenkle - CSCI335 44

Designing a DB
•Design tables to hold your data

ØData’s name and types
•Similar to OO design

ØNo duplication of data
ØHave pointers to info in other tables

•Main difference: no lists
ØIf you think “list”, think of a OneToMany or a

ManyToMany table that contains the relationships
between the data

May 9, 2024 Sprenkle - CSCI335 45

Standard Data Types
•Standard to SQL

ØCHAR - fixed-length character
ØVARCHAR - variable-length character
•Requires more processing than CHAR

ØINTEGER - whole numbers
ØNUMERIC
ØNames for types in specific DB may vary

•More data types available in each DB
May 9, 2024 Sprenkle - CSCI335 46

PostgreSQL Data Types
• Names for standard data types

ØNumeric: int, smallint, real, double
precision

ØStrings
•char(N) - fixed length of N (padded)
•varchar(N) - variable length, with a max of N
•text - variable unlimited length

• Additional useful data types
Ødate, time, timestamp, and interval
Øtimestamp includes both date and time

May 9, 2024 Sprenkle - CSCI335 47

Constraints
•PRIMARY KEY may not have null values
•UNIQUE may have null values

ØExample: username when have a separate id
•FOREIGN KEY

ØUse key from another (“foreign”) table
ØExample: shopping cart has its own id; references the user’s id

as owner
•CHECK

Ø value in a certain column must satisfy a Boolean (truth-value)
expression

ØExample: GPA >= 0

May 9, 2024 Sprenkle - CSCI335 48

Creating a Table
•Example:

May 9, 2024 Sprenkle - CSCI335 49

CREATE TABLE weather (
 city varchar(80),
 temp_lo int, -- low temperature
 temp_hi int, -- high temperature
 prcp real, -- precipitation
 date date
);

Storing Passwords (toy example)
• Passwords should not be stored in plaintext
• Use the hashing function md5 to store/compare

passwords
Ømd5('password')

• Compare user’s input password md5’d with password in
database
Ø SELECT COUNT(id) FROM Users WHERE
username=‘test’ AND password=md5(‘password’);

ØWhat are the possible outputs from this query?

May 9, 2024 Sprenkle - CSCI335 50

There are stronger ways to encrypt passwords,
but for this practice exercise, this is fine.

Using PostgreSQL on Command-Line
•ssh into bartik
•Run the PostgreSQL client: psql , connecting to

the appropriate database
•At the prompt, type in SQL statements, ending

with ;
•Use \q to quit out of the PostgreSQL client
•Use space bar to page through results (rows)and

q to stop paging

May 9, 2024 Sprenkle - CSCI335 51

PostgreSQL Practice
• Display all the tables: \dt
• Display the schema for the students table: \d students
• View all information about all the students
• View just the last names of the students
• View just the last names of the students who are seniors
• View all the information about the majors
• Do a join on the students and majors tables (retrieving all the columns)

1. Now, add studentstomajors to the join
2. Add a WHERE clause that requires that the student’s id needs to match

the studentstomajor’s student id
3. And, finally, add a WHERE clause that requires that the major’s id needs

to match the studenttomajor’s major id

May 9, 2024 Sprenkle - CSCI335 52

JDBC

May 9, 2024 Sprenkle - CSCI335 53

JDBC: Java Database Connectivity
•Database-independent connectivity

ØJDBC converts generalized JDBC calls into vendor-
specific SQL calls

•Classes in java.sql.* and javax.sql.*
packages

May 9, 2024 Sprenkle - CSCI335 54

Using JDBC in a Java Program
1. Load the database driver
2.Obtain a connection
3.Create and execute statements (SQL queries)
4.Use result sets (tables) to navigate through the

results
5.Close the connection

May 9, 2024 Sprenkle - CSCI335 55

Elaborate in following slides…

java.sql.DriverManager
•Provides a common access layer for different

database drivers
•Requires that each driver used by the application

be registered before use
•Load the database driver by its name using
ClassLoader:

May 9, 2024 Sprenkle - CSCI335 56

Class.forName("org.postgresql.Driver");

Creating a Connection
• After loading the DB driver, create the connection (see

API for all ways)

• Close connection when done
ØRelease resources

May 9, 2024 Sprenkle - CSCI335 57

Type of DB
Location of DB,
port optional DB name

String url = "jdbc:postgresql://hopper:5432/cs335";
Connection con = DriverManager.getConnection(url,
 username, password);

con.close(); Where should these code
fragments go in a servlet?

Statements

•executeQuery(String sql)
ØReturns a ResultSet, which is like a virtual table of

results

ØThen, iterate through ResultSet, row by row
•executeUpdate(String sql) to update table

ØReturns an integer representing the number of
affected rows

May 9, 2024 Sprenkle - CSCI335 58

rs = stmt.executeQuery("SELECT * FROM table");

Statement stmt = con.createStatement();

Iterating Through ResultSets
•Example:

•Can access column values by name or which
column (count starts at 1, left to right)

May 9, 2024 Sprenkle - CSCI335 59

ResultSet rs = stmt.executeQuery("SELECT * FROM majors");

while(rs.next()) {
 String name= rs.getString("name");
 String dept = rs.getString(2); // column 2
 System.out.println(name + "\t" + dept);
}

Useful ResultSet Methods
•rs.next() – moves cursor one row forward

ØReturns true if the new current row is valid; false if
there are no more rows

•To get the number of rows in the result:

•ResultSetMetaData getMetaData()
ØInformation about the table, such as number, types,

and properties of columns

May 9, 2024 Sprenkle - CSCI335 60

rs.last();
int numberOfRows = rs.getRow();

Prepared Statements
• con.prepareStatement(String template)

ØCompile SQL statement “templates”
• Allows statements to be reused with parameters

Ø Java handles formatting of Strings, etc. as parameters
ØMore secure (more later)

• Example:

May 9, 2024 Sprenkle - CSCI335 61

updateSales = con.prepareStatement(
"INSERT INTO Sales (quantity, name) VALUES (?, ?)");

Preferred approach to
make SQL statements

? = ParameterTemplate statement
Must set the parameters before executing

Prepared Statements
• con.prepareStatement(String template)

Ø Compile SQL statement “templates”
• Allows statements to be reused with parameters

• Set parameters (starting at 1). Example:
Ø updateSales.setInt(1, 100);
Ø updateSales.setString(2, "French Roast");

• Java handles formatting the String appropriately for the query
• Then, execute query, similar to (regular) Statements

May 9, 2024 Sprenkle - CSCI335 62

? = Parameter

updateSales = con.prepareStatement(
"INSERT INTO Sales (quantity, name) VALUES (?, ?)");

Preferred approach to
make SQL statements

Typical Process for Using
PreparedStatements
•Create a connection
•Create prepared statement
•Set the parameters
•Execute the query/update

ØIf it’s an update, confirm that returned number of
updates is what you expected

ØIf it’s a query, process the returned ResultSet

May 9, 2024 Sprenkle - CSCI335 63

Note: you won’t always have to do all of the above process.
Example: Multiple prepared statements may be created from one connection.

JDBC
•API Documentation: java.sql.*

ØStatements, Connections, ResultSets, etc. are
all Interfaces
•Driver/Library implements interfaces for its DBMS

•Limitations
ØJava doesn’t compile the SQL statements
•Exact syntax depends on DB

May 9, 2024 Sprenkle - CSCI335 64

Best Practice
1. Test/run/verify concrete queries using DBMS

command line

2. Turn concrete queries into template queries for
prepared statements in JDBC

May 9, 2024 Sprenkle - CSCI335 65

Example Using JDBC

May 9, 2024 Sprenkle - CSCI335 66

Transactions in JDBC
•By default, a connection is in auto-commit mode

ØEach statement is a transaction
ØAutomatically committed as soon as executed

May 9, 2024 Sprenkle - CSCI335 67

Transactions in JDBC
•You can turn off auto-commit and execute

multiple statements as a transaction
ØDatabase can keep handling others’ reads
ØOthers won’t see updates until you commit

•Can call rollback to abort updates
May 9, 2024 Sprenkle - CSCI335 68

con.setAutoCommit(false);
// execute SQL statements …
con.commit(); // commit those statements
con.setAutoCommit(true);

Servlets and JDBC
• In general, we want to minimize the use of JDBC in the servlets

Ø Separation of concerns
• DB-related concerns

Ø Same queries in multiple servlets
• Don’t want to duplicate code
• If DB tables or queries change, only change in one place

Ø Managing of limited number of connections of database
• Instead, have Java classes (model) that communicate with the

DB
Ø Convert ResultSets to objects that servlets/JSPs can use

• We’ll use frameworks that help with this

May 9, 2024 Sprenkle - CSCI335 69

Web Application
Server

Web Application Architecture Overview

May 9, 2024 Sprenkle - CSCI335 70

DB or XML
or text files

Servlets,
JSPs

Automatically generate
UI (HTML),

Handle user requests
Data structures,
helper classes

Datastore

Us
er

 In
te

rfa
ce

(H
TM

L,
 C

SS
, J

av
aS

cr
ip

t)

Application
State

Java
Model/

Backend

“The Hack”

• Notified by W&L News Director
• President’s Day
• Actual link: https://gist.github.com/anonymous/4971936

Ø Target : http://www.cs.wlu.edu/ (not the DB server)
Ø Only had some of the data, not all in actual database

• Figured out they just found my posted SQL file on the assignment page
Ø Purposedly public; no security breach

May 9, 2024 Sprenkle - CSCI335 71

Second Washington University hacked data base! Washington and
Lee University full unedited database!
gist.github.com/anonymous/4971…
<https://t.co/3fqGJwXC>#SweetInfoOp
<http://twitter.com/search?q=%23SweetInfoOp>

TODO
•Lab 8 – by tonight at 11:59 p.m.

May 9, 2024 Sprenkle - CSCI335 72

