
1

Objec&ves	
• Review:	Version	Control,	JSPs	
• Quality	A?ributes	of	Web	SoBware	
•  Introduc&on	to	Rela&onal	Databases,	SQL	
• JDBC	

May	5,	2016	 Sprenkle	-	CSCI335	 1	

Version	Control	Review	
• Why	do	we	need	version	control?	
• What	can	we	do	with	version	control?	

Ø What	doesn’t	it	do?	
• What	version	control	soBware	are	we	using?	
• How	do	you	get	a	working	copy	of	code	that	is	
stored	in	version	control?	

• How	do	you	publish	your	changes	to	the	public	
copy	of	the	code?	
Ø What	should	you	do	before	publishing	your	changes?	

May	5,	2016	 Sprenkle	-	CSCI335	 2	

JSPs	and	Organiza&on	Review	
• What	mo&vated	the	development	of	JSPs	(in	
addi&on	to	servlets)?	

• What	is	in	a	JSP	file?	
• How	do	JSPs	execute?	
• What	are	your	goals	when	organizing	your	code	
in	a	JSP	(versus	what	goes	into	a	servlet)?	

• Where	can	we	put	JSPs	so	that	users	can’t	
directly	access	them?	
Ø Why	would	you	want	to	do	that?	

May	5,	2016	 Sprenkle	-	CSCI335	 3	

DISCUSSION	OF	“QUALITY	
ATTRIBUTES”	

Most	important	points?	

May	5,	2016	 Sprenkle	-	CSCI335	 4	

Discussion	of	“Quality	A?ributes”	

• More	to	usability	than	naviga&on	
Ø How	easy	to	do	the	func&onality	

• What	are	some	of	the	differences	between	
tradi&onal	applica&ons	and	web	applica&ons?	
Ø Leads	to	differences	in	quality	a?ributes	

May	5,	2016	 Sprenkle	-	CSCI335	 5	

Comparison	of	Applica&ons	

May	5,	2016	 Sprenkle	-	CSCI335	 6	

Attribute Traditional Web Applications
Location On clients Client, Server (& more)

Languages Java, C, C++, etc.
Traditional languages and
Scripting languages,
HTML, Other languages

Technologies Network, DB

Development
Team Programmers

Programmers, graphics
designers, usability
engineers, Network, DB

Economics Time to market Returning customers; later
but better

Releases Infrequent (~monthly),
expensive

Frequent (~days),
inexpensive

2

Quality	A?ributes	

May	5,	2016	 Sprenkle	-	CSCI335	 7	

Attribute Web Applications
Reliability Must work, or go to another site

Usability Must be usable, or go to another site

Security Protect user data, information

Availability 24/7/365

Scalability Thousands of requests per second, more?

Maintainability Short maintenance cycle, frequent updates

Time-to-market Later but better is okay

Discussion	
• What	are	examples	of	sites	that	you	used	to	use	
but	you	switched	because	something	be?er	
came	along?	

May	5,	2016	 Sprenkle	-	CSCI335	 8	

JIRA:	SOFTWARE	AND	PROJECT	
MANAGEMENT	

May	5,	2016	 Sprenkle	-	CSCI335	 9	

Jira	
• Collabora&on	tool	
•  Issue	Tracking	Tool	

Ø Alterna&ve	to	Bugzilla	
Ø One	of	few	proprietary	tools	we’ll	use	

May	5,	2016	 Sprenkle	-	CSCI335	 10	

http://csjira.wlu.edu

Project	Organiza&on	
• Code	base	organiza&on	

May	5,	2016	 Sprenkle	-	CSCI335	 11	

Looking	Ahead	
• Now:	Project	

Ø Revise	requirements	
• Add	todos	into	JIRA	

Ø Revise	Sta&c	Mockups	--	close	to	“real”	
• Guide	for	next	steps	
• Emailed	to	Clients	for	approval,	discussion	

• This	aBernoon	
Ø Databases,	SQL,	JDBC	

May	5,	2016	 Sprenkle	-	CSCI335	 12	

3

DATABASES	AND	SQL	

May	5,	2016	 Sprenkle	-	CSCI335	 13	

Web Application
Server

Web	Applica&on	Architecture	Overview	

May	5,	2016	 Sprenkle	-	CSCI335	 14	

DB or XML
or text files

Servlets,
JSPs

Automatically generate
UI (HTML),

Handle user requests
Data structures,
helper classes

Datastore

U
se

r
In

te
rf

ac
e

(H
TM

L,
 C

SS
, J

av
aS

cr
ip

t)

Application
State

Java
Model/
Backend

Database	Overview	
• Store	data	in	such	a	way	to	allow	efficient	
storage,	search,	and	update	

• Rela=onal	Data	Model	-	currently	most	popular	
type	of	database	
Ø Different	vendors:	PostgreSQL,	Oracle,	MySQL,	DB2,	
MSSQL	

Ø Data	is	stored	in	tables	
Ø A"ributes:	column	names	(one	word)	
Ø En,,es:	rows	in	table	
Ø OBen	contain	primary	key:		
a	set	of	columns	that	uniquely	iden&fy	a	row	

May	5,	2016	 Sprenkle	-	CSCI335	 15	

Example	Students	Table	
•  id	is	the	primary	key	
• What	are	the	a?ributes?	
• What	are	the	en&&es?	

May	5,	2016	 Sprenkle	-	CSCI335	 16	

id lastName firstName gradYear major
10011 Aaronson Aaron 2013 CSCI

43123 Brown Allison 2014 ENGL

Example	Students	Table	
•  id	is	the	primary	key	
• What	are	the	a?ributes?	
• What	are	the	en&&es?	

May	5,	2016	 Sprenkle	-	CSCI335	 17	

id lastName firstName gradYear major
10011 Aaronson Aaron 2013 CSCI

43123 Brown Allison 2014 ENGL

Attributes

En
ti

ti
es

Courses	Table	
• Primary	key	is	(Department,	Number)	

Ø As	a	group,	these	uniquely	iden&fy	a	row	

May	5,	2016	 Sprenkle	-	CSCI335	 18	

department number name description

CSCI 101 Survey of
Computer Science A survey of …

CSCI 111 Fundamentals of
Programming I

An introduction
to …

4

SQL:	STRUCTURED	QUERY	
LANGUAGE	

May	5,	2016	 Sprenkle	-	CSCI335	 19	

SQL:	Structured	Query	Language	
• Standardized	language	for	manipula&ng	and	
querying	rela&onal	databases	
Ø May	be	slightly	different	depending	on	DB	vendor	

• Pronounced	“S-Q-L”	or	“Sequel”	
	

May	5,	2016	 Sprenkle	-	CSCI335	 20	

SQL:	Structured	Query	Language	
• Reserved	words	are	not	case-sensi&ve	

Ø I	will	tend	to	write	them	in	all-caps	and	bold	
Ø Tables,	column	names	-	may	be	case	sensi&ve	

• Commands	end	in	;
Ø Can	have	extra	white	space,	new	lines	in	commands	
Ø End	when	see	;		

• Represent	string	literals	with	single	quotes	''	

May	5,	2016	 Sprenkle	-	CSCI335	 21	

SELECT	Command	
• Queries	the	database	
• Returns	a	result—a	virtual	table	
• Syntax:	

Ø Columns,	tables	separated	by	commas	
Ø Can	select	all	columns	with	*	
Ø Where	clause	specifies	constraints	on	what	to	select	
from	the	table	

May	5,	2016	 Sprenkle	-	CSCI335	 22	

SELECT column_names  
FROM table_names [WHERE condition];

Optional

SELECT	Examples	
• SELECT * FROM Students;

• SELECT lastName, major FROM Students;

May	5,	2016	 Sprenkle	-	CSCI335	 23	

id lastName firstName gradYear major
10011 Aaronson Aaron 2013 CSCI

43123 Brown Allison 2014 ENGL

lastName major
Aaronson CSCI

Brown ENGL

Virtual Tables

WHERE	Condi&ons	
• Limits	which	rows	you	get	back	
• Comparison	operators:	>, >=, <, <=, <>	
• Can	contain	AND	for	compound	condi&ons	
• LIKE matches a string against a pattern	

Ø Wildcard:	%	,	matches	any	sequence	of	0	or	more	
characters	

• IN	:	match	any	
• BETWEEN:	Like	comparison	using	AND,	inclusive	

May	5,	2016	 Sprenkle	-	CSCI335	 24	

5

SELECT	Examples	
• What	do	these	select	statements	mean?	

Ø SELECT * FROM Students  
WHERE major='CSCI';

Ø SELECT firstName, lastName  
FROM Students WHERE Major='CSCI'  
AND gradYear=2016;

Ø SELECT lastName FROM Students  
WHERE firstName LIKE 'Eli%';

May	5,	2016	 Sprenkle	-	CSCI335	 25	

SELECT	Examples	
• What	do	these	select	statements	mean?	

Ø SELECT lastName FROM Students WHERE
Major IN ('CSCI', 'PHYS', 'MATH');

Ø SELECT lastName FROM Students  
WHERE Major NOT IN ('CSCI', 'PHYS',
'MATH');

Ø SELECT firstName FROM Students  
WHERE gradYear BETWEEN 2016 AND
2018;

May	5,	2016	 Sprenkle	-	CSCI335	 26	

Set	vs	Bag	Seman&cs	

May	5,	2016	 Sprenkle	-	CSCI335	 27	

Set	vs	Bag	Seman&cs	
• Bag	

Ø Duplicates	allowed	
Ø Number	of	duplicates	is	significant	
Ø Used	by	SQL	by	default	

• Set	
Ø No	duplicates	
Ø Use	keyword	DISTINCT	

May	5,	2016	 Sprenkle	-	CSCI335	 28	

Set	vs	Bag	

May	5,	2016	 Sprenkle	-	CSCI335	 29	

SELECT lastName
FROM Students;

SELECT DISTINCT lastName  
FROM Students;

lastName
Smith
…
Smith
Jones
Jones

lastName
Smith
Jones

Aggregates	
• Standard	SQL	aggregate	func&ons:	COUNT,
SUM, AVG, MIN, MAX

• Can	only	used	in	the	SELECT	part	of	query	

• Example
Ø SELECT COUNT(*), AVG(GPA)  
FROM Students WHERE gradYear=2013	

May	5,	2016	 Sprenkle	-	CSCI335	 30	

6

ORDER BY	
• Last	opera&on	performed,	last	in	query	
• Orders:	

Ø ASC	=	ascending	
Ø DESC	=	descending	

• Example
Ø SELECT firstName, lastName  
FROM Students WHERE gradYear=2016  
ORDER BY GPA DESC;		

May	5,	2016	 Sprenkle	-	CSCI335	 31	

Majors	Table	
• Another	table	to	keep	track	of	majors	
• Primary	Key:	id	

May	5,	2016	 Sprenkle	-	CSCI335	 32	

id name department
1 ART-BA ART

2 ARTH-BA ART

Changes	Students	Table	
• Use	an	id	to	iden&fy	major	(primary	key)	

May	5,	2016	 Sprenkle	-	CSCI335	 33	

id name department
1 ART-BA ART

2 ARTH-BA ART

id last Name first Name gradYear majorID
10011 Aaronson Aaron 2013 123

43123 Brown Allison 2014 157

Majors:

Students:
Foreign Key

JOIN	Queries	
• Join	two	tables	on	an	a?ribute	

May	5,	2016	 Sprenkle	-	CSCI335	 34	

SELECT lastName, name  
FROM Students, Majors  
WHERE Students.majorID=Majors.id;

id name department
1 ART-BA ART
2 ARTH-BA ART

id last Name first Name gradYear majorID

10011 Aaronson Aaron 2013 123

43123 Brown Allison 2014 157

Majors:

Students:

JOIN	Queries	
• Join	two	tables	on	an	a?ribute	

May	5,	2016	 Sprenkle	-	CSCI335	 35	

SELECT lastName, name  
FROM Students, Majors  
WHERE Students.majorID=Majors.id;

lastName name
Aaronson CSCI

Brown ENGL

From Students From Majors

JOIN	Queries	
• What	if	two	tables	have	the	same	column	name?	

Ø Add	the	table	name	and	a	.	to	the	beginning	of	the	
column,	i.e.,	TableName.columnName	

May	5,	2016	 Sprenkle	-	CSCI335	 36	

SELECT Students.lastName, Majors.name  
FROM Students, Majors  
WHERE Students.majorID=Majors.id;

7

What	if	Students	Have	Mul&ple	Majors?	

• We	don’t	necessarily	want	to	add	another	
column	to	Students	table	
Ø What	if	student	has	3	majors?	

• Example	of	Many	to	Many	Rela&onship	
• Solu&on:	Create	StudentsToMajors	table:		

May	5,	2016	 Sprenkle	-	CSCI335	 37	

studentID majorID
435 243

435 232

Primary Key:
(StudentID, MajorID)
Foreign Keys from
Students, Majors Tables

INSERT	Statements	
• You	can	add	rows	to	a	table	

• Preferred	Method:	include	column	names	
Ø Don’t	depend	on	order	

May	5,	2016	 Sprenkle	-	CSCI335	 38	

INSERT INTO Majors VALUES  
(354, 'BioInformatics-BS', 'CSCI');

INSERT INTO Majors (id, name, department)
VALUES (354, 'BioInformatics-BS', 'CSCI');

Assumes filling in all values, in column order

INSERT	Statements	
• Automa&cally	create	ids	

•  If	table	is	set	up	appropriately,	let	the	DB	handle	
crea&ng	unique	ids:		

May	5,	2016	 Sprenkle	-	CSCI335	 39	

INSERT INTO Majors (id, name, department)
VALUES (nextval('majors_sequence'),
'Bio-Informatics-BS', 'CSCI');

INSERT INTO Majors (name, department)
VALUES ('Bio-Informatics-BS', 'CSCI');

UPDATE	Statement	
• You	can	modify	rows	of	a	table	
• Use	WHERE	condi&on	to	specify	which	rows	to	
update	

• Example:	Update	a	student’s	married	name	

• Example:	Update	all	first	years	to	undeclared	

May	5,	2016	 Sprenkle	-	CSCI335	 40	

UPDATE Students SET  
LastName='Smith-Jones' WHERE id=12;

UPDATE Students SET majorID=345
WHERE gradYear=2016;

DELETE	Statement	
• You	can	delete	rows	from	a	table	

• Example	

May	5,	2016	 Sprenkle	-	CSCI335	 41	

DELETE FROM table [WHERE condition];

DELETE FROM EnrolledStudents WHERE
hasPrerequisites=False AND course_id=456;

Using	a	Database	
• DBMS:	Database	management	system	

• Using	PostgreSQL	in	this	class	
Ø Free,	open	source	

• Slight	differences	in	syntax	between	DBMSs	

• DBMS	can	contain	mul&ple	databases	
Ø Need	to	say	which	DB	you	want	to	use	

May	5,	2016	 Sprenkle	-	CSCI335	 42	

8

Designing	a	DB	
• Design	tables	to	hold	your	data	

Ø Data’s	name	and	types	

• Similar	to	OO	design	
Ø No	duplica&on	of	data	
Ø Have	pointers	to	info	in	other	tables	

• Main	difference:	no	lists	
Ø If	you	think	“list”,	think	of	a	OneToMany	or	a	
ManyToMany	table	that	contains	the	rela&onships	
between	the	data	

May	5,	2016	 Sprenkle	-	CSCI335	 43	

Standard	Data	Types	
• Standard	to	SQL	

Ø CHAR	-	fixed-length	character	
Ø VARCHAR	-	variable-length	character	

• Requires	more	processing	than	CHAR	
Ø INTEGER	-	whole	numbers	
Ø NUMERIC	
Ø Names	for	types	in	specific	DB	may	vary	

• More	data	types	available	in	each	DB	

May	5,	2016	 Sprenkle	-	CSCI335	 44	

PostgreSQL	Data	Types	
• Names	for	standard	data	types	

Ø Numeric: int, smallint, real, double
precision

Ø Strings	
• char(N) -	fixed	length	(padded)	
• varchar(N) -	variable	length,	with	a	max	
• text -	variable	unlimited	length		

• Addi&onal	useful	data	types	
Ø date, time, timestamp, and interval
Ø Timestamp includes	both	date	and	&me	

May	5,	2016	 Sprenkle	-	CSCI335	 45	

Constraints	
• PRIMARY KEY	may	not	have	null	values	
• UNIQUE	may	have	null	values	

Ø Example:	username	when	have	a	separate	id	
• FOREIGN KEY	

Ø Use	key	from	another	(“foreign”)	table	
Ø Example:	shopping	cart	has	its	own	id;	references	the	
user’s	id	as	owner	

• CHECK	
Ø value	in	a	certain	column	must	sa&sfy	a	Boolean	
(truth-value)	expression	

Ø Example:	GPA	>=	0	
May	5,	2016	 Sprenkle	-	CSCI335	 46	

Crea&ng	a	Table	
• Example:	

May	5,	2016	 Sprenkle	-	CSCI335	 47	

CREATE TABLE weather (
 city varchar(80),
 temp_lo int, -- low temperature
 temp_hi int, -- high temperature
 prcp real, -- precipitation
 date date
);

Project	Databases	
• What	tables	should	you	need?	
• What	data?	
• What	constraints?	

May	5,	2016	 Sprenkle	-	CSCI335	 48	

9

JDBC	

May	5,	2016	 Sprenkle	-	CSCI335	 49	

JDBC:	Java	Database	Connec&vity	
• Database-independent	connec&vity	

Ø JDBC	converts	generalized	JDBC	calls	into	vendor-
specific	SQL	calls	

• Classes	in	java.sql.*	and	javax.sql.*	
packages	

May	5,	2016	 Sprenkle	-	CSCI335	 50	

Using	JDBC	in	a	Java	Program	
1.  Load	the	database	driver	
2. Obtain	a	connec=on	
3.  Create	and	execute	statements	(SQL	queries)	
4. Use	result	sets	(tables)	to	navigate	through	the	

results	
5.   Close	the	connec&on		

May	5,	2016	 Sprenkle	-	CSCI335	 51	

Elaborate in following slides…

java.sql.DriverManager	
• Provides	a	common	access	layer	for	different	
database	drivers		

• Requires	that	each	driver	used	by	the	applica&on	
be	registered	before	use	

• Load	the	database	driver	by its name	using	
ClassLoader:	

May	5,	2016	 Sprenkle	-	CSCI335	 52	

Class.forName(“org.postgresql.Driver”);

Crea&ng	a	Connec&on	
•  ABer	loading	the	DB	driver,	create	the	connec=on	(see	
API	for	all	ways)	

•  Close	connec&on	when	done	
Ø  Release	resources	

May	5,	2016	 Sprenkle	-	CSCI335	 53	

Type of DB
Location of DB,

port optional DB name

String url = "jdbc:postgresql://hopper:5432/cs335";
Connection con = DriverManager.getConnection(url,

 username, password);

con.close(); Where should these code
fragments go in a servlet?

Statements	

• executeQuery(String sql)
Ø Returns	a	ResultSet,	which	is	like	a	virtual	table	
of	results	

Ø Iterate	through	ResultSet, row by row

• executeUpdate(String sql)	to	update	
table	
Ø Returns	an	integer	represen&ng	the	number	of	
affected	rows	

May	5,	2016	 Sprenkle	-	CSCI335	 54	

rs = stmt.executeQuery("SELECT * FROM table");

Statement stmt = con.createStatement();

10

Itera&ng	Through	ResultSets	
• Example:	

• Can	access	column	values	by	name	or	which	
column	(count	starts	at	1,	leB	to	right)	

May	5,	2016	 Sprenkle	-	CSCI335	 55	

ResultSet rs = stmt.executeQuery("SELECT * " +
"FROM majors");

while(rs.next()) {
String name= rs.getString("name");
String dept = rs.getString(2); // column 2
System.out.println(name + "\t" + dept);

}

Useful	ResultSet	Methods	
• Number	of	rows	in	the	result:	

•  Informa&on	about	the	table,	such	as	number,	
types,	and	proper&es	of	columns:	
Ø ResultSetMetaData getMetaData()

May	5,	2016	 Sprenkle	-	CSCI335	 56	

rs.last();
int numberOfRows = rs.getRow();

Prepared	Statements	
• con.prepareStatement(String template)

Ø  Compile	SQL	statement	“templates”	
•  Reuse	statement,	passing	in	parameters	

Ø  Java	handles	formasng	of	Strings,	etc.	as	parameters	
Ø More	secure	(more	later)	

•  Set	parameters	
Ø updateSales.setInt(1, 100);
Ø updateSales.setString(2, "French Roast");
Ø  Columns	start	at	1

May	5,	2016	 Sprenkle	-	CSCI335	 57	

? = Parameter

updateSales = con.prepareStatement("INSERT"
+ "INTO Sales (quantity, name) VALUES"+
"(?, ?)");

Preferred approach to
make SQL statements JDBC	

• API	Documenta&on:	java.sql.*
Ø Statements,	Connections,	ResultSets,	etc.	
are	all	Interfaces	
• Driver/Library	implements	interfaces	for	its	database	

• Limita&ons	
Ø Java	doesn’t	compile	the	SQL	statements	

• Exact	syntax	depends	on	DB	
• Compile,	run,	verify	queries	outside	of	Java	for	your	
database	

• Then	copy	and	use	in	Java	code	

May	5,	2016	 Sprenkle	-	CSCI335	 58	

Using	PostgreSQL	on	Command-Line	
•  In	a	terminal,	ssh	into	hopper	

Ø ssh	hopper	
• Run	the	PostgreSQL	client:	psql	,	connec&ng	to	
the	appropriate	database	
Ø psql	cs335	

• At	the	prompt,	type	in	SQL	statements,	ending	
in	;	

May	5,	2016	 Sprenkle	-	CSCI335	 59	

Examples	Using	JDBC	

May	5,	2016	 Sprenkle	-	CSCI335	 60	

11

Transac&ons	in	JDBC	
• By	default,	a	connec&on	is	in	auto-commit	mode	

Ø Each	statement	is	a	transac&on	
Ø Automa&cally	commi?ed	as	soon	as	executed	

May	5,	2016	 Sprenkle	-	CSCI335	 61	

Transac&ons	in	JDBC	
• You	can	turn	off	auto-commit	and	execute	
mul&ple	statements	as	a	transac&on	
Ø Database	can	keep	handling	others’	reads	
Ø Others	won’t	see	updates	un&l	you	commit	

• Can	call	rollback	to	abort	updates	

May	5,	2016	 Sprenkle	-	CSCI335	 62	

con.setAutoCommit(false);
// execute SQL statements …
con.commit(); // commit those statements
con.setAutoCommit(true);

Storing	Passwords	
• Use	md5	func&on	on	passwords	

Ø md5('password')
• Compare	user’s	input	password	md5’d	with	
password	in	database	
Ø SELECT COUNT(id) FROM Users WHERE
username=? AND password=md5(?);

• Example:	username	and	password	=	‘test’	

May	5,	2016	 Sprenkle	-	CSCI335	 63	

Connec&on	Pool	
• Want	to	reuse	DB	connec&ons	

Ø Reduce	overhead	of	crea&ng	and	closing	connec&ons	
to	database	

• Could	write	our	own	connec&on	pool	class	
Ø Many	examples	online	

• Apache	wrote	the	one	that	we’ll	use	
Ø http://commons.apache.org/dbcp/

May	5,	2016	 Sprenkle	-	CSCI335	 64	

Using	the	Connec&on	Pool	
• Create	a	DBManager that contains a
DataSource	object	in	the	ServletContext	
Ø All	the	servlets	can	see	the	ServletContext
Ø Shared	resource,	given	name,	value	

• When	implemen&ng	a	servlet	that	requires	a	DB	
connec&on	
Ø init	method	gets	the	DBManager object	from	the	
ServletContext

Ø When	need	a	connec&on,	call	getConnection	on	
DBManager object	

May	5,	2016	 Sprenkle	-	CSCI335	 65	 May	5,	2016	 Sprenkle	-	CSCI335	 66	

Servlets	and	JDBC	
•  In	general,	we	want	to	minimize	the	use	of	JDBC	in	
the	servlets	

• Same	queries	in	mul&ple	servlets	
Ø Don’t	want	to	duplicate	code	
Ø  If	DB	tables	or	queries	change,	only	change	in	one	place	

•  Instead,	we	want	to	have	Java	classes	(model)	that	
communicate	with	the	DB	
Ø Convert	ResultSets	to	objects	that	servlets/JSPs	can	
use	

• Sugges&on:	add	methods	to	DBManager that	
execute	queries	and	return	Java	objects,	as	
appropriate	

12

TODO	
• Lab	6	–	by	tonight	midnight	

Ø Must	be	done	on	Linux	machines	
Ø Restric&ons	on	DB	access	

• Revisions	of	requirements,	sta&c	mockup,	etc.	
Ø Tonight	at	midnight	

May	5,	2016	 Sprenkle	-	CSCI335	 67	

