
1

Objec&ves	
• Review	Tes&ng	
• Error	Handling	
• Filters	
• Ajax	

May	12,	2016	 Sprenkle	-	CSCI335	 1	

https://www.facebook.com/ads/preferences

Tes&ng	Review	
•  Describe	the	general	tes&ng	process	

Ø What	validates/verifies	the	output	from	a	program?	

•  How	does	the	process	change	for	Web	applica&ons?	
• What	are	some	of	the	tes&ng	frameworks?	

Ø How	do	they	work?	
• What	is	a	tool	that	we	will	use	for	tes&ng?	

Ø What	are	its	advantages?	

• What	is	the	difference	between	tes&ng	and	debugging?	

May	12,	2016	 Sprenkle	-	CSCI335	 2	

Usability	Discussion	

May	12,	2016	 Sprenkle	-	CSCI335	 3	

Error	Handling	Discussion	
• What	types	of	errors	do	web	applica&ons	need	
to	handle?	

• Give	several	examples	and	describe	how	you	can	
handle	and/or	prevent	them?	

May	12,	2016	 Sprenkle	-	CSCI335	 4	

Error	Handling	
• User	input/data	

Ø Client-side	–	JavaScript	
Ø Server-side	–	last	line	of	defense	

• Handle	no	input	(i.e.,	parameter	is	null)	
• User	naviga&on	

Ø Make	sure	user	has	permission	to	be	where	s/he	is		
Ø WEB-INF	–	protects	user	from	going	to	JSP	page	
directly	

Ø Check	permissions	(e.g.,	kept	in	session)	
• Security	

Ø More	next	week	
May	12,	2016	 Sprenkle	-	CSCI335	 5	

SERVLET	FILTERS	

May	12,	2016	 Sprenkle	-	CSCI335	 6	

2

Web Application
Server

Web	Applica&on	Architecture	Overview	

May	12,	2016	 Sprenkle	-	CSCI335	 7	

DB or XML
or text files

Filters: can intercept
and transform requests

and responses

Datastore

U
se

r
In

te
rf

ac
e

(H
TM

L,
 C

SS
, J

av
aS

cr
ip

t)

Application
State

Java
Model/
Backend

Filter

Servlets,
JSPs, etc

Filters	
• Transform	requests	or	responses	

Ø Ex:	apply	some	encoding	to	all	responses	

• Can	act	as	a	func&on,	acached	to	any	servlet/JSP	
Ø Good	modulariza&on:	reuse	code	for	mul&ple	
servlets	

May	12,	2016	 Sprenkle	-	CSCI335	 8	

Servlets,
JSPs, etc

FilterUsers

Example:	Logging	Accesses	
• Want	to	log	all	accesses	to	the	web	applica&on	
• Created	a	Filter	that	intercepts	all	requests	to	
an	applica&on	and	records	them	in	a	log	

• Use	the	filter	on	mul&ple	applica&ons	
Ø Simply	change	the	ini&aliza&on	parameters	in	
web.xml	

May	12,	2016	 Sprenkle	-	CSCI335	 9	

Example:	Authorized	Access	
• We	don’t	want	users	to	get	to	various	pages	
unless	they	are	authorized	to	see	those	pages	

•  Instead	of	making	every	Servlet	check	
authoriza&on,	we’ll	use	a	Filter	
Ø Requests	go	through	Filter	before	going	to	the	
Servlet	

May 12, 2016 Sprenkle - CSCI335 10

May	12,	2016	 Sprenkle	-	CSCI335	 11	

Filter:	Authoriza&onFilter	
• Verifies	that	user	has	the	authority	(permission)	
to	access	certain	pages	

• Requests	go	through	filter	before	going	to	the	
requested	Servlet	

• web.xml	file	says	which	Servlets	need	to	be	
filtered	

Servlets,
JSPs, etc

Filter Filter	Implementa&on	
•  Implements	Filter	interface	
• doFilter	method	implementa&on	does	the	
filter	work,	called	for	each	acached	servlet	

• Use	annota&on	to	specify	configura&on	
parameters	and	which	servlets	to	filter	

May	12,	2016	 Sprenkle	-	CSCI335	 12	

@WebFilter(
 urlPatterns = {

"/My*"
 },
 initParams = {

@WebInitParam(name = "myparam", value =
"myvalue", description = "example parameter")
})

All URLs that start with My

Can also be specified in web.xml file

3

AJAX	

May	12,	2016	 Sprenkle	-	CSCI335	 13	

Ajax:	Asynchronous	JavaScript	+	XML	
• Not	a	programming	language	
• A	way	of	using	JavaScript	
• Provides	more	responsive	Web	pages	

Ø Get	data	from	a	server	without	reloading	your	page	
• Allows	dynamically	displaying	data	or	upda&ng	
the	page	without	disturbing	the	user	experience	

• Aids	in	the	crea&on	of	rich,	user-friendly	web	
sites	
Ø Examples:	Google	suggest	tool	and	maps,	Facebook,	
Flickr,	A9	

May	12,	2016	 Sprenkle	-	CSCI335	 14	

Ajax	Difference	
•  In	normal	request/response	HTTP	cycles,	the	
browser	locks,	wai&ng	for	the	response	and	an	
en&re	page	must	be	displayed	

• With	Ajax,	asynchronous	requests	are	made	and	
responses	update	part	of	a	page	
Ø User	can	con&nue	to	interact	with	a	page	while	
request	is	in	progress	

Ø Less	data	needs	to	be	transmiced	
Ø Page	update	is	quicker	because	only	part	of	a	page	is	
modified	

May	12,	2016	 Sprenkle	-	CSCI335	 15	

Core	Ajax	Concepts	
•  JavaScript's	XMLHttpRequest	object	can	fetch	files	
from	a	web	server	
Ø  Supported	in	IE7+,	Firefox,	Safari,	Opera,	Chrome	

•  JavaScript	can	execute	XMLHttpRequest	
asynchronously	
Ø  In	the	background,	transparent	to	user	

•  Contents	of	fetched	file	can	be	put	into	current	web	
page	using	DOM	
Ø  Reminder:	Document	Object	Model	

•  Result:	user's	web	page	updates	dynamically	without	a	
page	reload	

May	12,	2016	 Sprenkle	-	CSCI335	 16	

Ajax	Request	Overview	

May	12,	2016	 Sprenkle	-	CSCI335	 17	

HTML Page

 Replace	

This	

Server

Piece: Identified
using DOM

Could be a Servlet,
JSP, PHP, ASP, …

URL

Typical	Ajax	Request	

1.  User	clicks,	invokes	event	handler	
2.  Handler's	JS	code	creates	XMLHttpRequest	object	
3. XMLHttpRequest	object	requests	informa&on	

from	a	web	server	

May	12,	2016	 Sprenkle	-	CSCI335	 18	

4

Typical	Ajax	Request	

4.  Server	retrieves	appropriate	data,	sends	it	back	
5.  XMLHttpRequest	fires	event	when	data	arrives	

Ø  Called	a	callback	
6.  Can	acach	a	handler	to	be	no&fied	when	data	arrives	to	parse	

data,	update	web	page	
May	12,	2016	 Sprenkle	-	CSCI335	 19	

Typical	Ajax	Request	

•  Data	can	be	any	text	format:	HTML,	XML,	Text,	…	

May	12,	2016	 Sprenkle	-	CSCI335	 20	

How	Does	This	Change	Communica&on	
Pacerns?	

• Leads	to	smaller,	more	frequent	communica&on	
with	server	

May	12,	2016	 Sprenkle	-	CSCI335	 21	

XMLHttpRequest	Object	
• Methods	

Ø abort, getAllResponseHeaders,
getResponseHeader, open, send,
setRequestHeader

• Proper&es	
Ø onreadystatechange, readyState,
responseText, responseXML, status,
statusText	

May	12,	2016	 Sprenkle	-	CSCI335	 22	

Using	XMLHttpRequest		
•  Acach	event	handler	to	onreadystatechange	
event	
Ø Handler	called	when	request	state	changes,	e.g.,	finishes	
Ø function	contains	code	to	run	when	request	completes	

•  Replace	url	with	file	you	want	to	download	
•  Send	the	request	

May	12,	2016	 Sprenkle	-	CSCI335	 23	

var ajax = new XMLHttpRequest();
ajax.onreadystatechange = function;
ajax.open("GET", url, true);
ajax.send(null);

In an onscreen
control's

event handler:

XMLHcpRequest’s	readyState	
Property	
•  Holds	the	status	of	the	XMLHttpRequest
•  Changes	value	from	0	to	4	during	a	request	cycle:	

Ø  0:	not	ini&alized	
Ø  1:	connec&on	established	
Ø  2:	request	sent	
Ø  3:	processing	
Ø  4:	finished	and	response	is	ready	

• readyState	changes	➙	onreadystatechange	
handler	(callback	func&on)	runs	

•  Usually	we	are	only	interested	in	readyState	of	4	
May	12,	2016	 Sprenkle	-	CSCI335	 24	

5

Callback	Func&on	Example	

May	12,	2016	 Sprenkle	-	CSCI335	 25	

function processChange() {
 // 4 means the response has been returned, ready to be processed
 if (ajax.readyState == 4) {
 // 200 means "OK"
 if (ajax.status == 200) {
 // process whatever has been sent back here …

 // any other status means a problem
 } else {
 alert("There was a problem in the returned data:");
 }
 }
}

Http Status Code

Only do something
when readyState is 4

Ajax	XMLHttpRequest	template	
• Most	Ajax	code	uses	an	anonymous	func=on	as	
the	event	handler	
Ø A	func&on	declared	inside	another	and	not	given	a	
name	

Ø Useful	because	it	can	access	the	surrounding	local	
variable	

May	12,	2016	 Sprenkle	-	CSCI335	 26	

var ajax = new XMLHttpRequest();
ajax.onreadystatechange = function() {
 if (ajax.readyState == 4) {
 do something with ajax.responseText;
 }
};
ajax.open("GET", url, true);
ajax.send(null);

What does this
code do?

Browser	Compa&bility	

May	12,	2016	 Sprenkle	-	CSCI335	 27	

function processXML(url) {
if (window.XMLHttpRequest) {

// obtain new object
 req = new XMLHttpRequest();
 // set the callback function
 req.onreadystatechange = processChange;
 // do a GET with the url; "true" for asynch
 req.open("GET", url, true);
 // null for GET with native object
 req.send(null);
 // IE/Windows ActiveX object for IE5, 6
 } else if (window.ActiveXObject) {
 req = new ActiveXObject("Microsoft.XMLHTTP");
 if (req) {

req.onreadystatechange = processChange;
req.open("GET", url, true);
// don't send null for ActiveX
req.send();

 }
 } // else browser does not support Ajax

return req;
}

callback
function

Pet	Survey	Example	

May	12,	2016	 Sprenkle	-	CSCI335	 28	

Project	Discussion	
• Any	places	where	Ajax	could	be	useful?	

• How	far	did	you	get?	
• What	are	your	next	steps?	

May	12,	2016	 Sprenkle	-	CSCI335	 29	

Looking	Ahead	
• Tuesday	a.m.	–	Checkpoint	with	client	

Ø Increasingly	close	to	“done”	
• Final	implementa&on	

Ø Friday,	12-2	p.m.,	Spring	Fest	(final	implementa&on)	

May	12,	2016	 Sprenkle	-	CSCI335	 30	

