Objectives

Security:

» Injection attacks

» Cross-site scripting

» Insecure direct object reference
Group photo

May 17, 2016 Sprenkle - CSCI335 1

Review: Security

Why has the Web become such a huge target?

How can you protect against security
vulnerabilities?

TL;DR
Google’s Al is writing poetry

No. he was silent for a long

he said. moment.

“no,” he said. he was silent for a moment.
no,” i said. it was quiet for a moment.

it was dark and cold.
there was a pause.

“i know,” she said.
“thank you,” she said.

“come with me,” she said. it was my turn.
”talk to me,” she said. . . there is no one else in the
don’t worry about it,” she said. world.

it made me want to cry. there is no one else in sight.
no one had seen him since. they were the only ones who
it made me feel uneasy. mattered.

no one had seen him. they were the only ones left.
the thought made me smile. he had to be with me.

the pain was unbearable. she had to be with him.

the crowd was silent. i had to do this.
the man called out. i wanted to kill him.
the old man said. i started to cry.
the man asked. iturned to him.
May 17, 2016 Sprenkle - CSCI335 3

May 17, 2016 Sprenkle - CSCI335 2
SQL INJECTION ATTACK
May 17, 2016 Sprenkle - CSCI335 4

SQL Injection

Possible vulnerability when a program accepts
unvalidated input from a user and uses that input
to construct a dynamic SQL query to an SQL
database
» Client may construct crafted input that, when
embedded in a string, is interpreted as an SQL query

» Performs database operations not intended by
application writers

May 17, 2016 Sprenkle - CSCI335 5

SQL Injection

Root Cause: Failure to properly scrub, reject, or
escape domain-specific SQL characters from an
input vector

Solution:

» Define accepted character-sets for input vectors, and
enforce these white lists rigorously.

» Force input to conform to specific patterns when other
special characters are needed: dd-mm-yyyy

» Use SQL Prepared Statements

May 17, 2016 Sprenkle - CSCI335

SQL Injection

Typical query to email forgotten password:

SELECT fieldlist
FROM table
WHERE field = '$EMAIL';
Is the input sanitized? Try sprenkles@wlu.edu’
SELECT fieldlist Extra quote

FROM table
WHERE field = 'sprenkles@wlu'';

~ If not, the query will throw exception

May 17, 2016 Sprenkle - CSCI335 7

SQL Injection

How to exploit:
> User enters anything' OR 'x'="x

FROM table
WHERE field = 'anything' OR 'x'='x";

SELECT fieldlist / Always true

Query expected to only return one entry
» This one will return all entries in user table
» Probably only displays the first response

Can start to guess columns in table and table’s
name

May 17, 2016 Sprenkle - CSCI335 8

SQL Injection

Suppress the last quote:

SELECT email, passwd, login_id, full_name
FROM members
WHERE email = 'x' AND members.email IS NULL; --';

» Outcome: SQL Comment
Don’t need to worry about matching quotes

Is database read-only?
SELECT email, passwd, login_id, full_name

FROM members
WHERE email = 'x'; DROP TABLE members; --';

May 17, 2016 Sprenkle - CSCI335 9

Example: SQL Tautology Injection
Submitting SQL Query logic instead of a valid date can expose

confidential records.

Unvalidated Input
allows SQL Injection

/

T
Date vange (oo 2005-01-01] To [zondFos-zs GetStatement

% Date Account Description
No.

T 2006174 A/C Opening Fees
05-31

2 2006174 TRFto189
0531

3 2006174 TRFto196
05-31

4 2006-174 TRFto196
0531

May17,2006 From www.itsa.ufl.edu/2006/presentations/malpani.ppt 10

Example: SQL Tautology Injection

Submitting SQL Query logic instead of a valid date can expose
confidential records.

ransactions

|y_vy_v-mm-d@ |To " OR 1=1 —- D[Get Statel

Welcome to Kele Investments Feedbackl

Account Transactions

Daterange vy [6B 173 == 1o [ox 121 =] [_GelSwtement]

Bate Account Description
No.

2004- 32563 DEPOSITS

0331

2004- 325634 ATH Cashwdl, Seq:0365
ey

2004- 325634 TRF FRM ABC Company
Gi30

2004 325634 TRF T0 Credit Card Nor0765 2345 1423 7060
5.5

2004- 325634 ATH Cashwd], Seq:0583
o527

2004- 574563 _TRF T0 Credit Card No:6765 2045 1423 1311

May 17, 2016 From www.itsa.ufl.edu/2006/presentations/malpani.ppt 1

Validating Input
Black list: a list of input types that are expressly
forbidden from being used as application input

White list: a list of input types that are expressly
allowed as application input

Generally expressed as regular expressions

Input validation must be server side
» Not in JavaScript

May 17, 2016 Sprenkle - CSCI335 12

Recap of Solutions to
SQL Injection Attack

Use PreparedStatements
Validate input

HI, THIS IS OH, DEAR - DID HE | DID You REALLY WELL, WEVE LOST THIS
YOUR SON'5 SCHOOL. BREAK SOMETHING? | NAME YOUR SON YEAR'S GTUDENT RECORDS.
WERE HAVING SOME IN A WAY— Robert'); DROP I HOPE YOURE HAPPY.
COMPUTER TROUBLE. TABLE Studerts;—— 7 ¢
X X ¢ AND I HOPE
, 5 ~ OH.YES, LITTLE < YOUVE LEARNED
BOBBY TABLES, + 70 SANMIZE YOUR
WE CALL Hit. DRIPEAEE TS CROSS-SITE SCRIPTING
May 17, 2016 Sprenkle - CSCI335 13 May 17, 2016 Sprenkle - CSCI335 14
Sequence Diagram of a Sequence Diagram of a
Typical XSS Attack Typical XSS Attack
Vulnerable —_— Vulnerable
Attacker : Attacker Victim .
Web Site Web Site
1 A 1 - I
I Put script into | Email with link)
input fields Site saves to web site o .
1 script 1 1 Victim navigates
1 1 1 to web site
1 1 -)
1 1 1 Malicious script runs
G —————
1 1 Attacker has access
| 1 invictim’s context
1 1 |
May 17, 2016 Sprenkle - CSCI335 15 May 17, 2016 Sprenkle - CSCI335 16
Cross-Site Scripting (XSS) Unvalidated Input with XSS
Occurs any time... I eedback|Customer Care] Eontact]
Online application
* Raw data from attacker is sent to an innocent user’s browser Personal nformation
*First Name L
* Stored in database *Lasthame s
* Reflected from web input (form field, hidden field, URL, etc...) * Social Security Humber [555-55-5555
* Sent directly into rich JavaScript client }Bm"“::
(format yyyy- id) dose-tioil
’7 Try this in your browser — javascript:alert(document.cookie) romarmention "um@mm EEn e e)
TCHY Magwwirte]
« Steal user’s session, steal sensitive data, rewrite web page, redirect user to *Zip Code [30210
phishing or malware site Telephone tumber [555-s55-5555 |
* Most Severe: Install XSS proxy which allows attacker to observe and direct all “Emall[£ooato0. con.
user’s behavior on vulnerable site and force user to other sites Occupation
May 17, 2016 Sprenkle - CSCI335 OWASP Q May17,2016 From www.itsa.ufl.edu/2006/presentations/malpani.ppt 18

Unvalidated Input with XSS

Dear 2oz,

T
v
M
=
»
;

Online Trading

Register

Malformed Loan Request was
successfully processed.

o 2004 Ketey

May17,20106 From www.itsa.ufl.edu/2006/presentations/malpani.ppt 19

Unvalidated Input with XSS

Fe Edt View Favortes Tods Hep

Qut - Q- M@ G P orens @ -5 @ [JHI
P e e T ———)
- V|seachwer - 2 F B @ @l - D vaoot - B¢

> Home

Pending loan requests §

> Loans

» Net Banking F equestio Requestor Category o
> Credit cards FREY John HeCatterty ome o
» Contact u: 2 2 Peter Lauros Home. Ba
> Bills ontine ER car i
» Online Trading 4 4 Personal =3
» Register o g GLIGD i)
Attacker's Loan Request
May17,2006 From www.itsa.ufl.edu/2006/presentations/malpani.ppt 20

Unvalidated Input with XSS

Microsoft Internet Explorer

FrPSESSID b O aa 2B STt Attacker's Loan Request

Unvalidated Input resulted in a Cross-Site Scripting Attack
and theft of Administrator’s Cookie.
« Attacker would probably inject some other script,

not actually a popup

May17,20106 From www.itsa.ufl.edu/2006/presentations/malpani.ppt 21

Cross-Site Scripting:

Content Spoofing
Insert un-trusted content into the web
application that can be used to trick users

Compromise the integrity of application code via
malicious script code injected into the database

Limited only by the attackers’ imagination

May17,2006 From www.itsa.ufl.edu/2006/presentations/malpani.ppt 2

Cross-Site Scripting Exploit

<script> var oWH . .
window.open("","" "width=275, height=175,
top=200, le +=250 location=no, menubar=no,
status=no, toolbar=no, scrollbars=no,
resizable=no");oWH.document.write("

HTML FORM with POST request to http://
compromised-server/h4xor.php

"Y; </script>

'
>

May17,2016 From www.itsa.ufl.edu/2006/presentations/malpani.ppt 23

XSS: Content Spoofing

IV 3 http://ocalhost:8081/ke. .. (£)C)K)

Your session has expired, ; 5
Loa|l please enter your login and password Process | | Deny |
Loginld []
Password lﬁ
(" Submit
Email nowhere@nobody .com
Loan Type Home
- |Date of Birth (yyyy-mm-dd) 2011-11-11
Occupation 345-45-3456
Annual Income 35,000.00

May17,2006 From www.itsa.ufl.edu/2006/presentations/malpani.ppt 2

Stored XSS

Could not fnd message

Message List

Could not find message 0

Message List

May 17,2016 http://www.owasp.org/index.php/Testing_for_Cross_site_scripting

Testing for XSS

Test for valid HTML and script code allowed in an input
field

» Special characters like < or >

» <script>alert("XSS");<script>

» <script>alert(document.cookie);<script>

» article.php?title=<meta%20http-
equiv="refresh"%20content="0;">

Causes denial of service
References:
» http://ha.ckers.org/xss.html

» http://www.owasp.org/index.php/
Testing_for_Cross_site_scripting

May 17, 2016 Sprenkle - CSCI335 26

Cross-Site Scripting (XSS)

Cross-site scripting is possible when

» An adversary tricks a victim into clicking a link crafted
and presented to the victim via a web server or email

» The link contains a URL with embedded malicious script
(typically as a query string)
» The URL refers to host that echoes input back to a
browser without input validation
When victim clicks link, goes to the host in the URL

» Host processes the query string, echoes it to victim's
browser

» Victim's browser executes the malicious script

Root Cause: Failure to proactively reject or scrub
malicious characters from input vectors

May 17, 2016 Sprenkle - CSCI335 27

Cross-Site Scripting (XSS)

Allows cookie theft, credential theft, data
confidentiality, integrity, and availability risks

» Browser hijacking and unauthorized access to web

application is also possible using existing exploits

Unusual vulnerability because the system at fault, i.e.,
the web site not validating input, is not the victim of
attack
Remedy for XSS: web site perform adequate input
validation

» Global policy, Form- and Field- specific policies for
handling untrusted content

May 17, 2016 Sprenkle - CSCI335 28

Validating Input
Black list: a list of input types that are expressly
forbidden from being used as application input

White list: a list of input types that are expressly
allowed as application input

Generally expressed as regular expressions
Input validation must be server side
» Not in JavaScript

May 17, 2016 Sprenkle - CSCI335 29

INSECURE DIRECT OBJECT
REFERENCES

May 17, 2016 Sprenkle - CSCI335 30

Example

Application uses unverified data in a SQL call that
accesses account information:

String query = "SELECT * FROM accts WHERE account = ?";

PreparedStatement pstmt =
connection.prepareStatement(query);

pstmt.setString(1, request.getParameter("acct"));
ResultSet results = pstmt.executeQuery();

Above code accessed using
http://example.com/app/accountInfo?

acct=notmyacct
Why is this a problem?

May 17, 2016 Sprenkle - CSCI335 31

Insecure Direct Object References

The attacker can modify the ‘acct’ parameter in
browser to send whatever account number they
want.

If not verified, the attacker can access any user’s
account, instead of only the intended customer’s
account.

What should you do to prevent such issues?

May 17, 2016 Sprenkle - CSCI335 32

Prevention

Check user’s authorization to access that object
before giving them access to that object

May 17, 2016 Sprenkle - CSCI335 33

Security Features Do Not Imply
Security

Using one or more security algorithms/protocols
will not solve all your problems!
»Using encryption doesn’t protect against weak
passwords
»Using SSL in a Web server doesn’t protect against
DoS attacks, access to various files, etc.

May 17, 2016 Sprenkle - CSCI335 34

Security Features Do Not Imply
Security

Security features may be able to protect against
specific threats

If the software has bugs, is unreliable, or does
not cover all possible corner cases:

The system may not be secure despite its security
features

May 17, 2016 Sprenkle - CSCI335 35

“Good Enough” Security

Customers expect privacy and security

BUT, time spent designing for security should be
proportional to the number and types of threats
that your software faces

Design for security by incorporating “hooks” and
other low-effort functionality from the beginning

» Add more security as needed without having to
resort to work-arounds

May 17, 2016 Sprenkle - CSCI335 36

Don’t Reinvent the Wheel
Building a secure, high-performance

web server is a very challenging task
»Apache: www.apache.org

Use trusted components

»Keep up-to-date with security patches

May 17, 2016 Sprenkle - CSCI335

37

Using Your Knowledge for Good?

“So, You Hacked Our Site!”

<script language="javascript">
<t--//

/*This Script allows people to enter by using a form that asks for a
UserID and Password*/

function pasuser(form) {

if (form.id.value=="buyers") {

if (form.pass.value=="gov1996") {
location="http://officers.federalsuppliers.con/agents.html”

} else {

alert("Invalid Password")

}
} else { alert("Invalid UserID")
}
}

11>
</script>

http://thedailywtf.com/articles/so-you-hacked-our-site!.aspx

May 17, 2016 Sprenkle - CSCI335

38

Where Are Your Project’s Security
Vulnerabilities?

May 17, 2016 Sprenkle - CSCI335

39

TODO

Project
» Screen shot to me — tonight — preferred names?
» Final implementation deadline: Fri
12-2 p.m. in library
Bring laptops or other way to present
» Bug analysis: Friday
» Documentation, analysis: Saturday, 5 p.m.
Course evaluations
» On Sakai, under Tests & Quizzes
» By Saturday night
» 5% points possible extra credit on labs for 100%
submissions

May 17, 2016 Sprenkle - CSCI335

40

