
1

Objectives
• Review: JavaScript
• Quality Attributes of Web Software
• Introduction to Relational Databases, SQL
• JDBC

May 2, 2019 Sprenkle - CSCI335 1

JavaScript review
• True or False: JavaScript is just like Java
• How do you declare a variable? (2 ways)
• How do you write text to the web page?
• What is the syntax for functions?
• What are some examples of events?
• How do you access a particular element in a

document?
ØWhat are some ways to change that element?

May 10, 2016 Sprenkle - CS335 2

2

DISCUSSION OF “QUALITY
ATTRIBUTES”

Most important points?

May 2, 2019 Sprenkle - CSCI335 3

Quality Attributes
• How are web applications different from

“traditional”/desktop applications?
Ø Leads to differences in quality attributes

• React to “For most application types, commercial
developers have traditionally had little motivation to
produce high-quality software.”

• What are differences between 2002 (when article
was originally published) and now?

• Let’s add another point in the comparison: mobile
apps
Ø Compare mobile apps with web and desktop

May 2, 2019 Sprenkle - CSCI335 4

3

Comparison of Applications

May 2, 2019 Sprenkle - CSCI335 5

Attribute Traditional Web Applications
Location On clients Client, Server (& more)

Languages Java, C, C++, etc.
Traditional languages and
Scripting languages, HTML,
Other languages

Technologies Network, DB

Development
Team Programmers

Programmers, graphics
designers, usability
engineers, Network, DB

Economics Time to market Returning customers; later
but better

Releases Infrequent (~monthly),
expensive Frequent (~days), inexpensive

Quality Attributes

May 2, 2019 Sprenkle - CSCI335 6

Attribute Web Applications
Reliability Must work, or go to another site

Usability Must be usable, or go to another site

Security Protect user data, information

Availability 24/7/365

Scalability Thousands of requests per second, more?

Maintainability Short maintenance cycle, frequent updates

Time-to-market Later but better is okay

4

Discussion
• What are examples of sites that you used to use

but you switched because something better
came along?
ØHow easy is it to switch now?

May 2, 2019 Sprenkle - CSCI335 7

DATABASES AND SQL

May 2, 2019 Sprenkle - CSCI335 8

5

Web Application
Server

Web Application Architecture Overview

May 2, 2019 Sprenkle - CSCI335 9

DB or XML
or text files

Servlets,
JSPs

Automatically generate
UI (HTML),

Handle user requests
Data structures,
helper classes

Datastore
Us

er
 In

te
rfa

ce
(H

TM
L,

 C
SS

, J
av

aS
cr

ip
t)

Application
State

Java
Model/
Backend

Database Overview
• Store data in such a way to allow efficient

storage, search, and update
• Relational Data Model - currently most popular

type of database
ØMany vendors: PostgreSQL, Oracle, MySQL, DB2,

MSSQL
ØData is stored in tables
ØAttributes: column names (one word)
ØOften contain primary key:

a set of columns that uniquely identify a row

May 2, 2019 Sprenkle - CSCI335 10

6

DB Popularity

May 2, 2019 Sprenkle - CSCI335 11

Ranking based on web site mentions, searches, questions, job offers,
professional profiles, social network mentions

https://db-engines.com/en/ranking

Example Students Table
• id is the primary key
• What are the attributes?

May 2, 2019 Sprenkle - CSCI335 12

id lastName firstName gradYear major
10011 Aaronson Aaron 2021 CSCI

43123 Brown Allison 2020 ENGL

https://db-engines.com/en/ranking

7

Example Students Table
• id is the primary key
• What are the attributes?

May 2, 2019 Sprenkle - CSCI335 13

id lastName firstName gradYear major
10011 Aaronson Aaron 2021 CSCI

43123 Brown Allison 2020 ENGL

Attributes

Courses Table
• Primary key is (Department, Number)

ØAs a group, these uniquely identify a row

May 2, 2019 Sprenkle - CSCI335 14

department number name description

CSCI 101 Survey of
Computer Science A survey of …

CSCI 111 Fundamentals of
Programming I

An introduction
to …

8

SQL: STRUCTURED QUERY
LANGUAGE

May 2, 2019 Sprenkle - CSCI335 15

SQL: Structured Query Language
• Standardized language for manipulating and

querying relational databases
ØMay be slightly different depending on DB vendor

• Pronounced “S-Q-L” or “Sequel”

May 2, 2019 Sprenkle - CSCI335 16

9

SQL: Structured Query Language
• Reserved words are not case-sensitive

Ø I will tend to write them in all-caps and bold to
distinguish them in the slides

Ø Tables, column names - may be case sensitive
• Commands end in ;

ØCan have extra white space, new lines in commands
Ø End when see ;

• Represent string literals with single quotes ''

May 2, 2019 Sprenkle - CSCI335 17

SELECT Command
• Queries the database
• Returns a result—a virtual table
• Syntax:

ØColumns, tables separated by commas
ØCan select all columns with *
ØWhere clause specifies constraints on what to select

from the table

May 2, 2019 Sprenkle - CSCI335 18

SELECT column_names
FROM table_names [WHERE condition];

Optional

10

SELECT Examples
• SELECT * FROM Students;

• SELECT lastName, major FROM Students;

May 2, 2019 Sprenkle - CSCI335 19

id lastName firstName gradYear major
10011 Aaronson Aaron 2021 CSCI
43123 Brown Allison 2020 ENGL

lastName major
Aaronson CSCI

Brown ENGL

Virtual Tables

WHERE Conditions
• Limits which rows you get back
• Comparison operators: >, >=, <, <=, <>
• Can contain AND for compound conditions
•LIKE matches a string against a pattern

ØWildcard: % , matches any sequence of 0 or more
characters

•IN : match any
•BETWEEN: Like comparison using AND, inclusive

May 2, 2019 Sprenkle - CSCI335 20

11

SELECT Examples
• What do these select statements mean?

ØSELECT * FROM students
WHERE major='CSCI';

ØSELECT firstName, lastName
FROM students WHERE major='CSCI'
AND gradYear=2019;

ØSELECT lastName FROM students
WHERE firstName LIKE 'Eli%';

May 2, 2019 Sprenkle - CSCI335 21

SELECT Examples
• What do these select statements mean?

ØSELECT lastName FROM students WHERE
major IN ('CSCI', 'PHYS', 'MATH');

ØSELECT lastName FROM students
WHERE major NOT IN ('CSCI', 'PHYS',
'MATH');

ØSELECT firstName FROM students
WHERE gradYear BETWEEN 2019 AND
2021;

May 2, 2019 Sprenkle - CSCI335 22

12

Set vs Bag Semantics
• Data structures review

May 2, 2019 Sprenkle - CSCI335 23

Set vs Bag Semantics
• Bag

ØDuplicates allowed
ØNumber of duplicates is significant
ØUsed by SQL by default

• Set
ØNo duplicates
ØUse keyword DISTINCT

May 2, 2019 Sprenkle - CSCI335 24

13

Set vs Bag

May 2, 2019 Sprenkle - CSCI335 25

SELECT lastName
FROM Students;

SELECT DISTINCT lastName
FROM Students;

lastName
Smith
…
Smith
Jones
Jones

lastName
Smith
Jones

Aggregates
• Standard SQL aggregate functions: COUNT,
SUM, AVG, MIN, MAX

• Can only used in the SELECT part of query

• Example
ØSELECT COUNT(*), AVG(GPA)
FROM students WHERE gradYear=2019;

May 2, 2019 Sprenkle - CSCI335 26

14

ORDER BY
• Last operation performed, last in query
• Orders:

ØASC = ascending
ØDESC = descending

• Example
ØSELECT firstName, lastName
FROM Students WHERE gradYear=2019
ORDER BY GPA DESC;

May 2, 2019 Sprenkle - CSCI335 27

Majors Table
• Another table to keep track of majors
• Primary Key: id

May 2, 2019 Sprenkle - CSCI335 28

id name department
1 ART-BA ART

2 ARTH-BA ART

15

Changes Students Table
• Use an id to identify major (primary key)

May 2, 2019 Sprenkle - CSCI335 29

id name department
1 ART-BA ART
2 ARTH-BA ART

id last Name first Name gradYear majorID
10011 Aaronson Aaron 2021 123
43123 Brown Allison 2020 157

Majors:

Students:
Foreign Key

Join Queries
• Do a cross product of the joined tables
• Example:

ØPerforming a select on 3 tables, each with two rows

ØResults in

May 2, 2019 Sprenkle - CSCI335 30

A1

A2

B1

B2

C1

C2

A1 B1 C1

A1 B1 C2

A1 B2 C1

A1 B2 C2

A2 B1 C1

A2 B1 C2

A2 B2 C1

… … …

16

JOIN Queries
• Join two tables on an attribute

May 2, 2019 Sprenkle - CSCI335 31

SELECT lastName, name
FROM Students, Majors
WHERE Students.majorID=Majors.id;

id name department
1 ART-BA ART
2 ARTH-BA ART

id last Name first Name gradYear majorID
10011 Aaronson Aaron 2021 123

43123 Brown Allison 2020 157

Majors:

Students:

JOIN Queries
• Join two tables on an attribute

May 2, 2019 Sprenkle - CSCI335 32

SELECT lastName, name
FROM Students, Majors
WHERE Students.majorID=Majors.id;

lastName name
Aaronson CSCI
Brown ENGL

From Students From Majors

17

JOIN Queries
• What if two tables have the same column name?

ØAdd the table name and a . to the beginning of the
column, i.e., TableName.columnName

May 2, 2019 Sprenkle - CSCI335 33

SELECT Students.lastName, Majors.name
FROM Students, Majors
WHERE Students.majorID=Majors.id;

What if Students Have Multiple Majors?

• We don’t necessarily want to add another
column to Students table
ØWhat if student has 3 majors?

• Example of Many to Many Relationship
• Solution: Create StudentsToMajors table:

May 2, 2019 Sprenkle - CSCI335 34

studentID majorID
435 243

435 232

Primary Key:
(studentID, majorID)
Foreign Keys from
Students, Majors Tables

18

JOIN Queries
• Therefore, to find the students’ majors with this

new StudentsToMajors table, we would do

May 2, 2019 Sprenkle - CSCI335 35

SELECT Students.lastName, Majors.name
FROM Students, Majors, StudentsToMajors
WHERE
Students.majorID=StudentsToMajors.studentID
AND Majors.id = StudentsToMajors.majorID;

INSERT Statements
• You can add rows to a table

• Preferred Method: include column names
ØDon’t depend on order

May 2, 2019 Sprenkle - CSCI335 36

INSERT INTO Majors VALUES
(354, 'BioInformatics-BS', 'CSCI');

INSERT INTO Majors (id, name, department)
VALUES (354, 'BioInformatics-BS', 'CSCI');

Assumes filling in all values, in column order

19

INSERT Statements
• Automatically create ids

• If table is set up appropriately, let the DB handle
creating unique ids:

May 2, 2019 Sprenkle - CSCI335 37

INSERT INTO Majors (id, name, department)
VALUES (nextval('majors_sequence'),
'Bio-Informatics-BS', 'CSCI');

INSERT INTO Majors (name, department)
VALUES ('Bio-Informatics-BS', 'CSCI');

UPDATE Statement
• You can modify rows of a table
• Use WHERE condition to specify which rows to

update
• Example: Update a student’s married name

• Example: Update all first years to undeclared

May 2, 2019 Sprenkle - CSCI335 38

UPDATE Students SET
LastName='Smith-Jones' WHERE id=12;

UPDATE Students SET majorID=345
WHERE gradYear=2022;

20

DELETE Statement
• You can delete rows from a table

• Example

May 2, 2019 Sprenkle - CSCI335 39

DELETE FROM table [WHERE condition];

DELETE FROM EnrolledStudents WHERE
hasPrerequisites=False AND course_id=456;

Using a Database
• DBMS: Database management system

• Using PostgreSQL in this class
Ø Free, open source

• Slight differences in syntax between DBMSs

• DBMS can contain multiple databases
ØNeed to say which DB you want to use

May 2, 2019 Sprenkle - CSCI335 40

21

Designing a DB
• Design tables to hold your data

ØData’s name and types
• Similar to OO design

ØNo duplication of data
ØHave pointers to info in other tables

• Main difference: no lists
Ø If you think “list”, think of a OneToMany or a

ManyToMany table that contains the relationships
between the data

May 2, 2019 Sprenkle - CSCI335 41

Standard Data Types
• Standard to SQL

ØCHAR - fixed-length character
ØVARCHAR - variable-length character

• Requires more processing than CHAR
Ø INTEGER - whole numbers
ØNUMERIC
ØNames for types in specific DB may vary

• More data types available in each DB

May 2, 2019 Sprenkle - CSCI335 42

22

PostgreSQL Data Types
• Names for standard data types

ØNumeric: int, smallint, real, double
precision

Ø Strings
•char(N) - fixed length (padded)
•varchar(N) - variable length, with a max
•text - variable unlimited length

• Additional useful data types
Ødate, time, timestamp, and interval
ØTimestamp includes both date and time

May 2, 2019 Sprenkle - CSCI335 43

Constraints
•PRIMARY KEY may not have null values
•UNIQUE may have null values

Ø Example: username when have a separate id
•FOREIGN KEY

ØUse key from another (“foreign”) table
Ø Example: shopping cart has its own id; references the

user’s id as owner
•CHECK

Ø value in a certain column must satisfy a Boolean
(truth-value) expression

Ø Example: GPA >= 0
May 2, 2019 Sprenkle - CSCI335 44

23

Creating a Table
• Example:

May 2, 2019 Sprenkle - CSCI335 45

CREATE TABLE weather (
city varchar(80),
temp_lo int, -- low temperature
temp_hi int, -- high temperature
prcp real, -- precipitation
date date

);

Join Queries
• Joining two tables: creates a cross-product
• Where clauses restrict the number of results

produced

May 2, 2019 Sprenkle - CSCI335 46

24

“The Hack”

• Notified by W&L News Director
• President’s Day
• Actual link:

https://gist.github.com/anonymous/4971936
Ø Target : http://www.cs.wlu.edu/
Ø Only some of the data, not all in database

• Figured out they just found my posted SQL file
May 2, 2019 Sprenkle - CSCI335 47

Second Washington University hacked data base! Washington and
Lee University full unedited database!
gist.github.com/anonymous/4971…
<https://t.co/3fqGJwXC>#SweetInfoOp
<http://twitter.com/search?q=%23SweetInfoOp>

ChemTutor Database
• What tables will you need?
• What data?
• What constraints?

May 2, 2019 Sprenkle - CSCI335 48

25

JDBC

May 2, 2019 Sprenkle - CSCI335 49

JDBC: Java Database Connectivity
• Database-independent connectivity

Ø JDBC converts generalized JDBC calls into vendor-
specific SQL calls

• Classes in java.sql.* and javax.sql.*
packages

May 2, 2019 Sprenkle - CSCI335 50

26

Using JDBC in a Java Program
1. Load the database driver
2. Obtain a connection
3. Create and execute statements (SQL queries)
4. Use result sets (tables) to navigate through the

results
5. Close the connection

May 2, 2019 Sprenkle - CSCI335 51

Elaborate in following slides…

java.sql.DriverManager
• Provides a common access layer for different

database drivers
• Requires that each driver used by the application

be registered before use
• Load the database driver by its name using

ClassLoader:

May 2, 2019 Sprenkle - CSCI335 52

Class.forName("org.postgresql.Driver");

27

Creating a Connection
• After loading the DB driver, create the connection (see

API for all ways)

• Close connection when done
Ø Release resources

May 2, 2019 Sprenkle - CSCI335 53

Type of DB
Location of DB,

port optional DB name

String url = "jdbc:postgresql://hopper:5432/cs335";
Connection con = DriverManager.getConnection(url,

username, password);

con.close(); Where should these code
fragments go in a servlet?

Statements

•executeQuery(String sql)
ØReturns a ResultSet, which is like a virtual table

of results
Ø Iterate through ResultSet, row by row

•executeUpdate(String sql) to update
table
ØReturns an integer representing the number of

affected rows

May 2, 2019 Sprenkle - CSCI335 54

rs = stmt.executeQuery("SELECT * FROM table");

Statement stmt = con.createStatement();

28

Iterating Through ResultSets
• Example:

• Can access column values by name or which
column (count starts at 1, left to right)

May 2, 2019 Sprenkle - CSCI335 55

ResultSet rs = stmt.executeQuery("SELECT * " +
"FROM majors");

while(rs.next()) {
String name= rs.getString("name");
String dept = rs.getString(2); // column 2
System.out.println(name + "\t" + dept);

}

Useful ResultSet Methods
•rs.next() – moves cursor one row forward

ØReturns true if the new current row is valid; false if
there are no more rows

• Number of rows in the result:

• Information about the table, such as number,
types, and properties of columns:
ØResultSetMetaData getMetaData()

May 2, 2019 Sprenkle - CSCI335 56

rs.last();
int numberOfRows = rs.getRow();

29

Prepared Statements
• con.prepareStatement(String template)

Ø Compile SQL statement “templates”
• Allows reusing statement, passing in parameters

Ø Java handles formatting of Strings, etc. as parameters
Ø More secure (more later)

• Set parameters
Ø updateSales.setInt(1, 100);
Ø updateSales.setString(2, "French Roast");
Ø Columns start at 1

May 2, 2019 Sprenkle - CSCI335 57

? = Parameter

updateSales = con.prepareStatement("INSERT"
+ "INTO Sales (quantity, name) VALUES"+
"(?, ?)");

Preferred approach to
make SQL statements

JDBC
• API Documentation: java.sql.*

ØStatements, Connections, ResultSets, etc.
are all Interfaces
• Driver/Library implements interfaces for its database

• Limitations
Ø Java doesn’t compile the SQL statements

• Exact syntax depends on DB
• Compile, run, verify queries outside of Java for your

database
• Then copy and use in Java code

May 2, 2019 Sprenkle - CSCI335 58

30

Using PostgreSQL on Command-Line
• In a terminal, ssh into hopper

Ø ssh -XY hopper
• Run the PostgreSQL client: psql , connecting to

the appropriate database
Øpsql cs335

• At the prompt, type in SQL statements, ending in
;

May 2, 2019 Sprenkle - CSCI335 59

Examples Using JDBC

May 2, 2019 Sprenkle - CSCI335 60

31

Transactions in JDBC
• By default, a connection is in auto-commit mode

Ø Each statement is a transaction
ØAutomatically committed as soon as executed

May 2, 2019 Sprenkle - CSCI335 61

Transactions in JDBC
• You can turn off auto-commit and execute

multiple statements as a transaction
ØDatabase can keep handling others’ reads
ØOthers won’t see updates until you commit

• Can call rollback to abort updates

May 2, 2019 Sprenkle - CSCI335 62

con.setAutoCommit(false);
// execute SQL statements …
con.commit(); // commit those statements
con.setAutoCommit(true);

32

Storing Passwords
• Use md5 function on passwords

Ømd5('password')
• Compare user’s input password md5’d with

password in database
ØSELECT COUNT(id) FROM Users WHERE
username=? AND password=md5(?);

ØWhat are the possible outputs from this query?

• Example: username and password = ‘test’

May 2, 2019 Sprenkle - CSCI335 63

There are stronger ways to encrypt passwords,
but for this practice exercise, this is fine.

Connection Pool
• Want to reuse DB connections

ØReduce overhead of creating and closing connections
to database

• Could write our own connection pool class
ØMany examples online

• Apache wrote the one that we’ll use
Øhttp://commons.apache.org/dbcp/

May 2, 2019 Sprenkle - CSCI335 64

33

Using the Connection Pool
• Create a DBManager that contains a
DataSource object in the ServletContext
Ø All the servlets can see the ServletContext
Ø Shared resource, given name, value

• When implementing a servlet that requires a DB
connection
Ø init method gets the DBManager object from the
ServletContext

Ø When need a connection, call getConnection on
DBManager object

May 2, 2019 Sprenkle - CSCI335 65

May 2, 2019 Sprenkle - CSCI335 66

Servlets and JDBC
• In general, we want to minimize the use of JDBC in

the servlets
• Same queries in multiple servlets

Ø Don’t want to duplicate code
Ø If DB tables or queries change, only change in one place

• Instead, we want to have Java classes (model) that
communicate with the DB
Ø Convert ResultSets to objects that servlets/JSPs can

use
• Suggestion: add methods to DBManager that

execute queries and return Java objects, as
appropriate

34

TODO
• Lab 6 – by tonight at 11:59 p.m.
• Lab 7 – by Sunday at 11:59 p.m.

ØMust be done on Linux machines
ØRestrictions on DB access

May 2, 2019 Sprenkle - CSCI335 67

