Objectives

Review: JavaScript
Quality Attributes of Web Software

Introduction to Relational Databases, SQL
JDBC

May 2, 2019 Sprenkle - CSCI335

JavaScript review

True or False: JavaScript is just like Java
How do you declare a variable? (2 ways)
How do you write text to the web page?
What is the syntax for functions?

What are some examples of events?

How do you access a particular element in a
document?

What are some ways to change that element?

May 10, 2016 Sprenkle - CS335

This content is no longer available

The content you requested cannot be displayed right now. It may be temporarily unavailable, the link you clicked on may have expired,
or you may not have permission to view this page.

Close

May 2, 2019 Sprenkle - CSCI335 3

Quality Attributes

How are web applications different from
“traditional”/desktop applications?

» Leads to differences in quality attributes
React to “For most application types, commercial

developers have traditionally had little motivation to
produce high-quality software.”

What are differences between 2002 (when article
was originally published) and now?

Let’s add another point in the comparison: mobile
apps

» Compare mobile apps with web and desktop

May 2, 2019 Sprenkle - CSCI335 4

Comparison of Applications

Attribute Traditional Web Applications
Location On clients Client, Server (& more)
Traditional languages and
Languages Java, C, C++, etc. Scripting languages, HTML,

Other languages

Technologies

Network, DB

Development
Team

Programmers

Programmers, graphics
designers, usability
engineers, Network, DB

Returning customers; later

Economics Time to market
but better
Infrequent (“monthly), . .
Releases qu (v) Frequent (~days), inexpensive
expensive
May 2, 2019 Sprenkle - CSCI335 5

Quality Attributes

Attribute Web Applications
Reliability Must work, or go to another site
Usability Must be usable, or go to another site
Security Protect user data, information
Availability 24/7/365
Scalability Thousands of requests per second, more?

Maintainability

Short maintenance cycle, frequent updates

Time-to-market

Later but better is okay

May 2, 2019

Sprenkle - CSCI335

Discussion

What are examples of sites that you used to use
but you switched because something better
came along?

How easy is it to switch now?

May 2, 2019 Sprenkle - CSCI335 7

DATABASES AND SQL

May 2, 2019 Sprenkle - CSCI335 8

Web Application Architecture Overview

. DB or XML
/ Web Application \ or text files
Server
\

Application
\ State

Automatically generate

Ul (HTML),
Handle user requests

Datastore

Java
Model/
Backend

User Interface

(HTML, CSS, JavaScript)

Data structures,
helper classes

May 2, 2019 Sprenkle - CSCI335 9

Database Overview

Store data in such a way to allow efficient
storage, search, and update

Relational Data Model - currently most popular
type of database

» Many vendors: PostgreSQL, Oracle, MySQL, DB2,
MSSQL

» Data is stored in tables
» Attributes: column names (one word)

» Often contain primary key:.
a set of columns that uniquely identify a row

May 2, 2019 Sprenkle - CSCI335 10

DB Popularity

Rank Score

May Apr May DBMS Database Model May Apr May
2019 2019 2018 2019 2019 2018
1. 1. 1. Oracle &3 Relational, Multi-model & 1285.55 +5.61 -4.87
2. 2. 2. MySQLE3 Relational, Multi-mode! (& 1218.96 +3.82 -4.38
3. 3. 3. Microsoft SQL Server E3 Relational, Multi-model (& 1072.19 +12.23 -13.66
4., 4. 4 PostgreSQL E3 Relational, Multi-model & 478.89 +0.17 +77.99
5. 5. 5. MongoDB E3 Document 408.07 +6.10 +65.96
6. 6. 6. IBMDb2E3 Relational, Multi-mode! (& 174.44 -1.61 -11.17
7. 48 A9. Elasticsearch 2 Search engine, Multi-model & 148.62 +2.62 +18.18
8. ¥7. 7. Rediskl Key-value, Multi-model & 148.40 +2.03 +13.06
9. 9. 8. Microsoft Access Relational 143.78 -0.87 +10.67
10. 411 10. Cassandra 3 Wide column 125.72 +2.11 +7.89

Ranking based on web site mentions, searches, questions, job offers,
professional profiles, social network mentions

| ./ /dbengi en/ranki

May 2, 2019 Sprenkle - CSCI335 11

Example Students Table

id is the primary key
What are the attributes?

id lastName | firstName gradYear major
10011 | Aaronson |Aaron 2021 CSClI
43123 |Brown Allison 2020 ENGL

May 2, 2019 Sprenkle - CSCI335 12

https://db-engines.com/en/ranking

Example Students Table

id is the primary key
What are the attributes?

Attributes
A
— ~
id lastName | firstName gradYear major

10011 |Aaronson |Aaron 2021 CSCI
43123 |Brown Allison 2020 ENGL

May 2, 2019 Sprenkle - CSCI335 13
Courses Table

Primary key is (Department, Number)

As a group, these uniquely identify a row
department | number name description
Survey of
CSCl 101 Computer Science Asurvey of ...
csCl 111 Fundamen_tals of | An introduction

Programming | to ...

May 2, 2019

Sprenkle - CSCI335

14

SQL: STRUCTURED QUERY
LANGUAGE

May 2, 2019 Sprenkle - CSCI335 15

SQL: Structured Query Language

Standardized language for manipulating and
guerying relational databases

May be slightly different depending on DB vendor
Pronounced “S-Q-L” or “Sequel”

May 2, 2019 Sprenkle - CSCI335 16

SQL: Structured Query Language

Reserved words are not case-sensitive

» | will tend to write them in all-caps and bold to
distinguish them in the slides

» Tables, column names - may be case sensitive
Commands end in ;
» Can have extra white space, new lines in commands

» End when see ;

Represent string literals with single quotes "'

May 2, 2019 Sprenkle - CSCI335 17

SELECT Command

Queries the database

Returns a result—a virtual table

Syntax: Optional
p 4

SELECT column_names ‘/'
FROM table_names [WHERE condition];

» Columns, tables separated by commas
» Can select all columns with *

» Where clause specifies constraints on what to select
from the table

May 2, 2019 Sprenkle - CSCI335 18

SELECT Examples
SELECT * FROM Students;

id lastName | firstName gradYear major
10011 |Aaronson |Aaron 2021 CSCI
43123 |Brown Allison 2020 ENGL

ELECT lastName, major FROM Students;

lastName | major
Virtual Tables Aaronson | CSCI
Brown ENGL
May 2, 2019 Sprenkle - CSCI335 19
WHERE Conditions

Limits which rows you get back

Comparison operators: >, >=, <, <=, <>

Can contain AND for compound conditions

LIKE matches a string against a pattern
Wildcard: %, matches any sequence of 0 or more

characters

IN : match any
BETWEEN: Like comparison using AND, inclusive

May 2, 2019

Sprenkle - CSCI335

20

SELECT Examples

What do these select statements mean?

SELECT * FROM students
WHERE major="CSCI';

SELECT firstName, lastName
FROM students WHERE major="CSCI'

AND gradYear=2019;

SELECT lastName FROM students
WHERE firstName LIKE 'E11%';

May 2, 2019 Sprenkle - CSCI335 21

SELECT Examples

What do these select statements mean?

SELECT lastName FROM students WHERE
major IN ('CSCI', 'PHYS', 'MATH");

SELECT lastName FROM students
WHERE major NOT IN ('CSCI', 'PHYS',

"MATH'");

SELECT firstName FROM students
WHERE gradYear BETWEEN 2019 AND

2021;

May 2, 2019

Sprenkle - CSCI335 22

11

Set vs Bag Semantics

Data structures review

May 2, 2019 Sprenkle - CSCI335

23

Set vs Bag Semantics

Bag
» Duplicates allowed
» Number of duplicates is significant
» Used by SQL by default

Set

» No duplicates

> Use keyword DISTINCT

May 2, 2019 Sprenkle - CSCI335

24

12

Set vs Bag

lastName
SELECT lastName Smith
FROM Students; .

Smith

Jones

Jones

SELECT DISTINCT lastName lastName
FROM Students; Smith

Jones

May 2, 2019 Sprenkle - CSCI335 25

Aggregates

Standard SQL aggregate functions: COUNT,
SUM, AVG, MIN, MAX

Can only used in the SELECT part of query

Example

SELECT COUNT(*), AVG(GPA)
FROM students WHERE gradYear=2019;

May 2, 2019 Sprenkle - CSCI335 26

13

ORDER BY

Last operation performed, last in query

Orders:
ASC = ascending
DESC = descending
Example

SELECT firstName, lastName
FROM Students WHERE gradYear=2019
ORDER BY GPA DESC;

May 2, 2019 Sprenkle - CSCI335 27

Majors Table

Another table to keep track of majors
Primary Key: id

id name | department
1 ART-BA |ART
2 ARTH-BA | ART

May 2, 2019 Sprenkle - CSCI335 28

14

Changes Students Table

Use an id to identify major (primary key)

Majors: id name department
ART-BA ART
2 ARTH-BA ART
Foreign Key
Students:
id last Name | first Name | gradYear ?najorID
10011 Aaronson Aaron 2021 123
43123 |Brown Allison 2020 157

May 2, 2019 Sprenkle - CSCI335 29

Join Queries

Do a cross product of the joined tables

Example:
Performing a select on 3 tables, each with two rows
Al B1 C1
A2 B2 C2
Results in -5 EL cl
Al B1 C2
Al B2 C1
Al B2 C2
A2 B1 C1
A2 B1 C2
A2 B2 C1
May 2, 2019 30

15

JOIN Queries

Join two tables on an attribute

Majors:

Students:

id name department
1 ART-BA ART
2 ARTH-BA ART

id last Name | first Name | gradYear | majoriD
10011 Aaronson Aaron 2021 123
43123 Brown Allison 2020 157

SELECT lastName, name
FROM Students, Majors
WHERE Students.majorID=Majors.1id;

May 2, 2019

Sprenkle - CSCI335

31

JOIN Queries

Join two tables on an attribute

SELECT lastName, name
FROM Students, Majors
WHERE Students.majorID=Majors.1id;

From Students

May 2, 2019

lastName | name
Aaronson |CSCI
Brown ENGL

Sprenkle - CSCI335

From Majors

32

16

JOIN Queries

What if two tables have the same column name?

Add the table name and a . to the beginning of the
column, i.e., TableName . columnName

SELECT Students.lastName, Majors.name
FROM Students, Majors
WHERE Students.majorID=Majors.1id;

May 2, 2019 Sprenkle - CSCI335 33

What if Students Have Multiple Majors?

We don’t necessarily want to add another
column to Students table

What if student has 3 majors?
Example of Many to Many Relationship
Solution: Create StudentsToMajors table:

studentlD | majorID Primary Key:

435 243 (studentID, majorID)
Foreign Keys from

435 232 Students, Majors Tables

May 2, 2019 Sprenkle - CSCI335 34

17

JOIN Queries

Therefore, to find the students’ majors with this
new StudentsToMajors table, we would do

SELECT Students.lastName, Majors.name

FROM Students, Majors, StudentsToMajors
WHERE
Students.majorID=StudentsToMajors.studentID
AND Majors.id = StudentsToMajors.majorID;

May 2, 2019 Sprenkle - CSCI335

INSERT Statements

You can add rows to a table

INSERT INTO Majors VALUES
(354, 'BioInformatics-BS', 'CSCI');

Assumes filling in all values, in column order

Preferred Method: include column names
Don’t depend on order

INSERT INTO Majors (id, name, department)

Sprenkle - CSCI335

May 2, 2019

VALUES (354, 'BioInformatics-BS', 'CSCI');

18

INSERT Statements

Automatically create ids

INSERT INTO Majors (id, name, department)
VALUES (nextval('majors_sequence'),
'Bio-Informatics-BS', 'CSCI');

If table is set up appropriately, let the DB handle
creating unique ids:

INSERT INTO Majors (name, department)
VALUES ('Bio-Informatics-BS', "CSCI');

May 2, 2019 Sprenkle - CSCI335 37

UPDATE Statement

You can modify rows of a table

Use WHERE condition to specify which rows to
update

Example: Update a student’s married name

UPDATE Students SET
LastName="Smith-Jones' WHERE 1id=12;

Example: Update all first years to undeclared

UPDATE Students SET majorID=345
WHERE gradYear=2022;

May 2, 2019 Sprenkle - CSCI335 38

19

DELETE Statement

You can delete rows from a table

DELETE FROM table [WHERE condition];

Example

DELETE FROM EnrolledStudents WHERE
hasPrerequisites=False AND course_1d=456;

May 2, 2019 Sprenkle - CSCI335 39

Using a Database

DBMS: Database management system

Using PostgreSQL in this class
Free, open source

Slight differences in syntax between DBMSs

DBMS can contain multiple databases
Need to say which DB you want to use

May 2, 2019 Sprenkle - CSCI335 40

20

Designing a DB

Design tables to hold your data
Data’s name and types
Similar to OO design
No duplication of data
Have pointers to info in other tables
Main difference: no lists

If you think “list”, think of a OneToMany or a
ManyToMany table that contains the relationships
between the data

May 2, 2019 Sprenkle - CSCI335 41

Standard Data Types

Standard to SQL
CHAR - fixed-length character
VARCHAR - variable-length character
Requires more processing than CHAR
INTEGER - whole numbers
NUMERIC
Names for types in specific DB may vary

More data types available in each DB

May 2, 2019 Sprenkle - CSCI335 42

21

PostgreSQL Data Types

Names for standard data types

Numeric: int, smallint, real, double
precision

Strings
char(N) -fixed length (padded)
varchar(N) -variable length, with a max
text -variable unlimited length
Additional useful data types
date, time, timestamp, and interval
Timestamp includes both date and time

May 2, 2019 Sprenkle - CSCI335 43

Constraints

PRIMARY KEY may not have null values
UNIQUE may have null values

Example: username when have a separate id

FOREIGN KEY

Use key from another (“foreign”) table

Example: shopping cart has its own id; references the
user’s id as owner

CHECK

value in a certain column must satisfy a Boolean
(truth-value) expression

Example: GPA>=0

May 2, 2019 Sprenkle - CSCI335 44

22

Creating a Table

Example:

CREATE TABLE weather (

city varchar(80),
temp_lo int, -- low temperature
temp_hi int, -- high temperature
prcp real, -- precipitation
date date
DK
May 2, 2019 Sprenkle - CSCI335 45

Join Queries

Joining two tables: creates a cross-product

Where clauses restrict the number of results
produced

May 2, 2019 Sprenkle - CSCI335 46

23

“The Hack”

Second Washington University hacked data base! Washington and
Lee University full unedited database!
gist.github.com/anonymous/4971....
<https://t.co/3fqGJwXC>#SweetInfoOp
<http://twitter.com/search?q=%23SweetlnfoOp>

Notified by W&L News Director
President’s Day

Actual link:
https://gist.github.com/anonymous/4971936
Target : http://www.cs.wlu.edu/
Only some of the data, not all in database

Figured out they just found my posted SQL file

May 2, 2019 Sprenkle - CSCI335 47

ChemTutor Database

What tables will you need?
What data?
What constraints?

May 2, 2019 Sprenkle - CSCI335 48

24

JDBC

May 2, 2019 Sprenkle - CSCI335 49

JDBC: Java Database Connectivity

Database-independent connectivity

JDBC converts generalized JDBC calls into vendor-
specific SQL calls

Classesin java.sql.* and javax.sql.*
packages

May 2, 2019 Sprenkle - CSCI335 50

25

Using JDBC in a Java Program

Load the database driver
Obtain a connection
Create and execute statements (SQL queries)

Use result sets (tables) to navigate through the
results

Close the connection

Elaborate in following slides...

May 2, 2019 Sprenkle - CSCI335 51

java.sql.DriverManager

Provides a common access layer for different
database drivers

Requires that each driver used by the application
be registered before use

Load the database driver by its name using
ClassLoader:

Class.forName("org.postgresql.Driver");

May 2, 2019 Sprenkle - CSCI335 52

26

Creating a Connection

After loading the DB driver, create the connection (see

API for all ways) Location of DB

port optional DB name

String url = " ://hopper:5432/cs335";
Connection con = DriverManager.getConnection(url,
username, password);

Close connection when done
Release resources

Where should these code

con.close();
‘ fragments go in a servlet?

May 2, 2019 Sprenkle - CSCI335 53

Statements

Statement stmt = con.createStatement();

executeQuery(String sql)

Returns a ResultSet, which is like a virtual table
of results

lterate through ResultSet, row by row
rs = stmt.executeQuery("SELECT * FROM table");

executelUpdate(String sql) to update
table

Returns an integer representing the number of
affected rows

May 2, 2019 Sprenkle - CSCI335 54

27

lterating Through ResultSets

Example:

ResultSet rs = stmt.executeQuery("SELECT * " +
"FROM majors");

while(rs.next()) {
String name= rs.getString("name");

String dept = rs.getString(2); // column 2
System. out.println(Cname + "\t" + dept);

}

Can access column values by name or which
column (count starts at 1, left to right)

May 2, 2019 Sprenkle - CSCI335 55

Useful ResultSet Methods

rs.next() - moves cursor one row forward

Returns true if the new current row is valid; false if
there are no more rows

Number of rows in the result:
rs.last(Q);
int numberOfRows = rs.getRow();

Information about the table, such as number,
types, and properties of columns:
ResultSetMetaData getMetaData()

May 2, 2019 Sprenkle - CSCI335 56

28

Preferred approach to

Prepared Statements make SOL statements
con.prepareStatement(String template)

Compile SQL statement “templates”
Allows reusing statement, passing in parameters
Java handles formatting of Strings, etc. as parameters
More secure (more later)
updateSales = con.prepareStatement("INSERT"

+ "INTO Sales (quantity, name) VALUES"+
(7, "), ? = Parameter

Set parameters
updateSales.setInt(l, 100);
updateSales.setString(2, "French Roast");
Columns start at 1

May 2, 2019 Sprenkle - CSCI335 57

JDBC

APl Documentation: java.sql.*
Statements, Connections, ResultSets, etc.
are all Interfaces

Driver/Library implements interfaces for its database

Limitations
Java doesn’t compile the SQL statements
Exact syntax depends on DB

Compile, run, verify queries outside of Java for your
database
Then copy and use in Java code

May 2, 2019 Sprenkle - CSCI335 58

29

Using PostgreSQL on Command-Line

In a terminal, ssh into hopper
ssh -XY hopper

Run the PostgreSQL client: psql , connecting to
the appropriate database

psql cs335
At the prompt, type in SQL statements, ending

7

May 2, 2019 Sprenkle - CSCI335

in

59

Examples Using JDBC

May 2, 2019 Sprenkle - CSCI335

60

30

Transactions in JDBC

By default, a connection is in auto-commit mode
Each statement is a transaction
Automatically committed as soon as executed

May 2, 2019 Sprenkle - CSCI335 61

Transactions in JDBC

You can turn off auto-commit and execute
multiple statements as a transaction
Database can keep handling others’ reads

Others won’t see updates until you commit
con.setAutoCommit(false);
// execute SQL statements ..

con.commit(); // commit those statements
con.setAutoCommit(true);

Can call rol1lback to abort updates

May 2, 2019 Sprenkle - CSCI335 62

31

Storing Passwords

Use md5 function on passwords
md5("' password')

Compare user’s input password md5’d with

password in database

SELECT COUNT(1id) FROM Users WHERE
username=? AND password=md5(?);

What are the possible outputs from this query?

Example: username and password = ‘test’

There are stronger ways to encrypt passwords,
but for this practice exercise, this is fine.

May 2, 2019 Sprenkle - CSCI335 63

Connection Pool

Want to reuse DB connections

Reduce overhead of creating and closing connections
to database

Could write our own connection pool class

Many examples online

Apache wrote the one that we’ll use
http://commons.apache.org/dbcp/

May 2, 2019 Sprenkle - CSCI335 64

Using the Connection Pool

Create a DBManager that contains a

DataSource object in the ServletContext
All the servlets can see the ServletContext
Shared resource, given name, value

When implementing a servlet that requires a DB

connection

init method gets the DBManager object from the
ServletContext

When need a connection, call getConnection on
DBManager object

May 2, 2019 Sprenkle - CSCI335 65

Servlets and JDBC

In general, we want to minimize the use of JDBC in
the servlets
Same queries in multiple servlets

Don’t want to duplicate code

If DB tables or queries change, only change in one place
Instead, we want to have Java classes (model) that
communicate with the DB

Convert ResultSets to objects that servlets/JSPs can

use
Suggestion: add methods to DBManager that
execute queries and return Java objects, as
appropriate

May 2, 2019 Sprenkle - CSCI335 66

33

TODO

Lab 6 — by tonight at 11:59 p.m.
Lab 7 — by Sunday at 11:59 p.m.

Must be done on Linux machines
Restrictions on DB access

May 2, 2019 Sprenkle - CSCI335 67

34

