
1/24/22

1

Today
•Shell/Bash scripting

Jan 24, 2022 Sprenkle - CSCI397 1

1

Review: Unix Commands
• How do you configure bash?
• How is PATH used?
• What is an alias? How do you define it? Where can you

define? How can you see your aliases? How can you
delete it?

• How do you redirect input? Output?
• What is your favorite text editor?
• What does a shell script look like?
Ø How do you run a shell script?

Jan 24, 2022 Sprenkle - CSCI397 2

2

1/24/22

2

Classifications of Shell Commands
Recall: A shell script is a text file that contains shell or

UNIX commands
•Programs/Executables
Ø Most programs that are part of the OS in /bin,

/usr/bin
•Built-in commands
•Functions
•Aliases

Jan 24, 2022 Sprenkle - CSCI397 5

$ type cat
cat is /usr/bin/cat
$ type ls
ls is aliased to `ls --color=auto'
$ type cd
cd is a shell builtin
$ type if
if is a shell keyword

5

Classifications of Shell Commands
All work the same in taking parameters and exit status
•Programs/Executables
Ø Most programs that are part of the OS in /bin,

/usr/bin
•Built-in commands
•Functions
•Aliases

Jan 24, 2022 Sprenkle - CSCI397 6

6

1/24/22

3

Built-in Commands
•Built-in commands are internal to the shell and

do not create a separate process
•Commands are built-in because:
Ø They are intrinsic to the language (exit)
Ø They produce side effects on the current process (cd)
Ø They perform faster
•No fork/exec

Jan 24, 2022 Sprenkle - CSCI397 7

7

Important Built-in Commands

Jan 24, 2022 Sprenkle - CSCI397

exit Quit the shell
exec Replaces shell with program
cd Change working directory
shift Rearrange positional parameters
set Set positional parameters
wait Wait for background process to exit
umask Change default file permissions
eval Parse and execute string Check out cd:

1.which ls
2.which cd

8

8

1/24/22

4

Important Built-in Commands

Jan 24, 2022 Sprenkle - CSCI397

time Run command and print times
export Put variable into environment
trap Set signal handlers
continue Continue in loop
break Break in loop
return Return from function
: True
. Read file of commands into current shell

9

9

Comments
•Comments begin with an #
•Comments end at the end of the line
•Comments can begin whenever a token begins
•Our text editors should help you with syntax

highlighting
•Examples:

Jan 24, 2022 Sprenkle - CSCI397

This is a comment
and so is this
grep foo bar # this is a comment
grep foo bar# this is not a comment

Add a comment at 2nd line in your script that describes what your script does
10

10

1/24/22

5

Variables
•To set:
name=value
Ø Variables are untyped

•To use: $var
•Variables can be local or environment
Ø Environment variables are part of UNIX and can be

accessed by child processes
•To turn local variable into environment var:

export variable
Jan 24, 2022 Sprenkle - CSCI397

Notice no spaces around =

11

11

Variable Example

#!/bin/sh

MESSAGE="Hello World"
echo $MESSAGE
echo '$MESSAGE'
echo "$MESSAGE"

Jan 24, 2022 Sprenkle - CSCI397 variable.sh

Prints variable
Prints literally
Prints variable

12

12

1/24/22

6

Using Environment Variables

Jan 24, 2022 Sprenkle - CSCI397

#!/bin/bash

echo I am $USER
echo "I live at $HOME"

env_var.sh

• Both statements would work,
with or without quotes

• Better practice: with quotes

13

13

Parameters
•A parameter is one of the following:
Ø A positional parameter, starting from 0
Ø A special parameter

•To get the value of a parameter: ${param}
Ø Can be part of a word (abc${foo}def)
Ø Works within double quotes

•The {} can be omitted for simple variables, special
parameters, and single digit positional parameters

Jan 24, 2022 Sprenkle - CSCI397 14

14

1/24/22

7

Positional Parameters
• The arguments to a shell script

Ø $0, $1, $2, $3 …
Ø Parameter 0 is the name of the shell or the shell script

• The arguments to a shell function
• Arguments to the set built-in command

Ø set this is a test
• $1=this, $2=is, $3=a, $4=test

• Manipulated with shift
Ø shift 2
• $1=a, $2=test

Jan 24, 2022 Sprenkle - CSCI397 15

15

Example with Parameters
Script

Invocation:

Jan 24, 2022 Sprenkle - CSCI397

#!/bin/sh

Parameter 1: file
Parameter 2: how_many_lines
head -$2 $1

$ bash toplines /usr/share/dict/words 3
A
A's
AMD

16

16

1/24/22

8

Special Parameters

Jan 24, 2022 Sprenkle - CSCI397

Parameter Meaning

$# Number of positional parameters

$- Options currently in effect

$? Exit value of last executed command

$$ Process number of current process

$! Process number of background process

$* All arguments on command line from 1 on

“$@” All arguments on command line
Individually quoted “$1” “$2” …; good if
parameters contain spaces

params.sh
17

17

Exit Status
•$? : exit status of the most recently executed

command

•0 for exit status means that command executed
successfully/normally
Ø Anything else means there was an error

Jan 24, 2022 Sprenkle - CSCI397 18

run_some_command
EXIT_STATUS=$?

18

1/24/22

9

Special Characters
• The shell processes the following characters specially unless

quoted:
Ø | & () < > ; " ' $ ` space tab newline

• The following are special whenever patterns are processed:
Ø * ? []

• The following are special at the beginning of a word:
Ø # ~

• The following is special when processing assignments:
Ø =

Jan 24, 2022 Sprenkle - CSCI397 19

19

Command Substitution: ``
•Used to turn the output of a command into a

string
•Used to create arguments or variables

Jan 24, 2022 Sprenkle - CSCI397

$ date
Thu Jan 20 22:47:27 EST 2022
$ NOW=`date`
$ echo $NOW
Thu Jan 20 22:47:31 EST 2022
$ PATH=`genPath`:$PATH

20

20

1/24/22

10

Compound Commands
•Multiple commands
Ø Separated by semicolon or newline

•Command groupings
Ø pipelines

•Subshell
(command1; command2) > file

•Boolean operators
•Control structures

Jan 24, 2022 Sprenkle - CSCI397 21

21

Control Structures Summary
•if … then … fi
•while … done
•until … do … done
•for … do … done
•case … in … esac

Jan 24, 2022 Sprenkle - CSCI397 22

22

1/24/22

11

Control Structures: if

Jan 24, 2022 Sprenkle - CSCI397

if expression
then

command1
…

else
command2
…

fi

23

23

What is an expression?
•Any UNIX command
•Evaluates to true if the exit code is 0, false if the exit

code > 0
•Special command /bin/test handles most

common expressions:
Ø String compare
Ø Numeric comparison
Ø Check file properties

•[] often a built-in version of /bin/test for
syntactic sugar
Jan 24, 2022 Sprenkle - CSCI397 24

24

1/24/22

12

Examples
if test $USER = "sprenkles"
then

echo "I know you"
else

echo "I don’t know you"
fi

if [-f /tmp/stuff] && \
[`wc –l /tmp/stuff | cut -f1 -d" "` -gt 10]

then
echo "The file has more than 10 lines in it"

else
echo "The file is nonexistent or small"

fi

Jan 24, 2022 Sprenkle - CSCI397

know.sh

filesize.sh
25

25

Boolean Operators
•Exit value of a program is a number
Ø 0 means success
Ø anything else is a failure code

•cmd1 && cmd2
Ø executes cmd2 if cmd1 is successful

•cmd1 || cmd2
Ø executes cmd2 if cmd1 is not successful

Jan 24, 2022 Sprenkle - CSCI397 26

$ ls bad_file > /dev/null && date
$ ls bad_file > /dev/null || date
Mon Jan 17 15:32:05 EST 2020

Send output to black hole
(Can’t be read)

26

1/24/22

13

test Summary
•String based tests

•Numeric tests

Jan 24, 2022 Sprenkle - CSCI397

-z string Length of string is 0
-n string Length of string is not 0
string1 = string2 Strings are identical
string1 != string2 Strings differ
string string is not NULL

int1 –eq int2 First int equal to second
int1 –ne int2 First int not equal to second
-gt, -ge, -lt, -le greater, greater/equal, less, less/equal

27

27

test Summary
•File tests

•Logic

Jan 24, 2022 Sprenkle - CSCI397

-r file File exists and is readable
-w file File exists and is writable
-f file File is regular file (exists)
-d file File is directory
-s file File exists and is not empty

! Negate result of expression
-a, -o And operator, or operator
(expr) Groups an expression

28

28

1/24/22

14

What does this code do?

•Add appropriate code to toplines

Jan 24, 2022 Sprenkle - CSCI397

ARGS=1 # Number of arguments expected
Exit value if incorrect number of args passed.
E_BADARGS=65

test $# -lt $ARGS && echo "Usage: `basename $0` <arg1>" && \
exit $E_BADARGS

29

29

