
1/26/22

1

Today
•Shell/Bash scripting

Jan 26, 2022 Sprenkle - CSCI397 1

1

Review: Unix Commands
• What goes into a bash script?
• How do you write conditionals?
• How can you make a command execute only if another

command succeeds? Only if another command fails?
• How do you write comments in bash?
• How do you set and use variables?
Ø How do you make a variable an environment variable?

• How do we use parameters in a script? To a function?
• How do we substitute in a command?

Jan 26, 2022 Sprenkle - CSCI397 2

2

1/26/22

2

Using commands in commands
•Examples from my scripts

Jan 26, 2022 Sprenkle - CSCI397

java -cp mail.jar:email.jar grading.Email
$password $email "$subject" "`cat $filename`"

jarfiles=`ls $TURNINDIR/$STUDENT/$LAB/*.jar`
for jarfile in $jarfiles
do

echo "Jar file: $jarfile"
numJavaFiles=`jar tf $jarfile | grep -c ".java"`
if [$numJavaFiles = 0]; then

echo "No Java Files submitted by $STUDENT"
fi

done

3

3

Positional Parameters
• The arguments to a shell script

Ø $0, $1, $2, $3 …
Ø Parameter 0 is the name of the shell or the shell script

• The arguments to a shell function
• Arguments to the set built-in command

Ø set this is a test
• $1=this, $2=is, $3=a, $4=test

• Manipulated with shift
Ø shift 2
• $1=a, $2=test

Jan 26, 2022 Sprenkle - CSCI397 6

6

1/26/22

3

Example with Parameters
Script

Invocation:

Jan 26, 2022 Sprenkle - CSCI397

#!/bin/sh

Parameter 1: file
Parameter 2: how_many_lines
head -$2 $1

$ bash toplines /usr/share/dict/words 3
A
A's
AMD

7

7

Special Parameters

Jan 26, 2022 Sprenkle - CSCI397

Parameter Meaning

$# Number of positional parameters

$- Options currently in effect

$? Exit value of last executed command

$$ Process number of current process

$! Process number of background process

$* All arguments on command line from 1 on

“$@” All arguments on command line
Individually quoted “$1” “$2” …; good if
parameters contain spaces

params.sh
8

8

1/26/22

4

MORE FILE COMMANDS

Jan 26, 2022 Sprenkle - CSCI397 9

9

Other File-Related Commands

Jan 26, 2022 Sprenkle - CSCI397

Command Purpose

file Determine file type

basename Strip directory and suffix from file names

dirname Strip non-directory suffix from file name

wc Print number of newlines, words, and bytes in
files
-l : lines
-m : chars
-w : words

10

10

1/26/22

5

Try Out These Examples
•echo $HISTFILE
•file $HISTFILE
•dirname $HISTFILE
•basename $HISTFILE
•wc $HISTFILE
•wc –l $HISTFILE

Jan 26, 2022 Sprenkle - CSCI397 11

11

Managing Disk Space

Jan 26, 2022 Sprenkle - CSCI397

Command Purpose Options

du estimate file space usage -h human readable
-s summarize

df report filesystem disk space usage -h human readable

Many more options…
See man page

12

12

1/26/22

6

Managing Disk Space
•du Estimate file space usage (disk usage)
Ø-h human readable format (e.g., MB, GB rather than

KB)
Ø-s summarize results for a directory

Jan 26, 2022 Sprenkle - CSCI397

sprenkles@lcomp-fs1:cs397$ du -s handouts/
32888 handouts/
sprenkles@lcomp-fs1:cs397$ du -sh handouts/
33M handouts/

13

13

Managing Disk Space
•df File system disk usage
Ø-h human readable format (e.g., MB, GB rather than

KB)

Jan 26, 2022 Sprenkle - CSCI397

sprenkles@43350-CSCI-ILAB:course397$ df -h
Filesystem Size Used Avail Use% Mounted on
udev 7.7G 0 7.7G 0% /dev
/dev/nvme0n1p2 96G 46G 46G 51% /
tmpfs 1.6G 2.8M 1.6G 1% /run
…
lcomp-fs1:/csci 2.0T 86G 1.8T 5% /csci
lcomp-fs1:/users/tkhan@ad.wlu.edu 2.0T 86G 1.8T 5% /home/tkhan@ad.wlu.edu
lcomp-fs1:/users/sprenkles@ad.wlu.edu 2.0T 86G 1.8T 5%
/home/sprenkles@ad.wlu.edu

14

14

1/26/22

7

BACK TO BASH

Jan 26, 2022 Sprenkle - CSCI397 15

15

What does this script do?

Jan 26, 2022 Sprenkle - CSCI397

ARGS=1
E_BADARGS=65

test $# -lt $ARGS && echo "Usage: `basename $0` <arg1>" && \
exit $E_BADARGS

echo "You are in `pwd`”

16

$ bash example.sh
Usage: example.sh <arg1>
$ echo $?
65
$ bash example.sh test
You are in
/csci/courses/cs397/handouts/bash
$ echo $?
0

16

1/26/22

8

for loops

•Examples:

Jan 26, 2022 Sprenkle - CSCI397

for var in list
do

command
done

sum=0
for var in "$@"
do

sum=`expr $sum + $var`
done
echo "The sum is $sum"

for file in *.sh
do

echo "We have $file"
done

for_file.sh
for_params.sh

sum_params.sh

17

17

Functions
•Functions are similar to scripts and other

commands except:
Ø They can produce side effects in the caller’s script
Ø Variables are shared between caller and callee
• Everything is global

Ø The positional parameters are saved and restored
when invoking a function.

Jan 26, 2022 Sprenkle - CSCI397 18

18

1/26/22

9

Function Syntax

•Local variables: positional parameters
Ø $0 is the function’s name

Jan 26, 2022 Sprenkle - CSCI397 19

name () {
commands

}

function name {
commands

}

or

19

Function Example
•What is the expected output?

Jan 26, 2022 Sprenkle - CSCI397

function function_B {
echo Function B.

}

function function_A {
echo $0: $1
function_C "$1"

}

function function_D {
echo Function D.

}

function function_C () {
echo "---------------"
echo Function C: $1
echo GLOBAL = $GLOBAL
let GLOBAL=$GLOBAL+1
echo "---------------"

}

GLOBAL=1

FUNCTION CALLS
Pass parameter to function A
function_A "Function A."
function_B
function_C "Function C."
function_D

functions.sh
functions2.sh

20

20

1/26/22

10

Command Search Rules
•When bash encounters some command (without

a specified path), it needs to figure out what to
execute

•In order, bash looks for
Ø Functions
Ø Built-ins
ØPATH search

Jan 26, 2022 Sprenkle - CSCI397 21

21

UNIX SECURITY

Jan 26, 2022 Sprenkle - CSCI397 22

22

1/26/22

11

Fundamentals of Security
•UNIX systems have one or more users, identified

with a number and name
•A set of users can form a group. A user can be a

member of multiple groups
Ø A special user (id 0, name root) has

complete control
Ø Each user has a primary (default) group

Jan 26, 2022 Sprenkle - CSCI397
See what groups you belong to…

23

23

How are Users and Groups Used?
•Used to determine if file or process operations

can be performed:
Ø Can a given file be read? written to?
Ø Can this program be run?
Ø Can I use this piece of hardware?
Ø Can I stop a particular process that’s running?

Jan 26, 2022 Sprenkle - CSCI397 24

24

1/26/22

12

File Permissions
• UNIX provides a way to protect files based on users and

groups
• Three types of permissions:
Ø Read: process may read contents of file
Ø Write: process may write contents of file
Ø Execute: process may execute file

• Three sets of permissions:
Ø Permissions for owner
Ø Permissions for group (1 group per file)
Ø Permissions for other

Jan 26, 2022 Sprenkle - CSCI397 25

25

A simple example

Jan 26, 2022 Sprenkle - CSCI397

$ ls –l /bin
lrwxrwxrwx 1 root root 7 Aug 24 08:47 /bin -> usr/bin
$

read write execute

26

26

1/26/22

13

Directory permissions
•Same types and sets of permissions as for files:
Ø read: process may read the directory contents (i.e.,

list files)
Øwrite: process may add/remove files in the directory
Ø execute: process may open files in directory or

subdirectories

Jan 26, 2022 Sprenkle - CSCI397 27

27

Unix Permissions
•Categories: owner, group, others
•Permissions: read, write, execute

Jan 26, 2022 Sprenkle - CSCI397

sprenkle@fred:cs397$ ls -lrth
total 12K
drwxr-sr-x 20 sprenkles domain users 4.0K Jan 17 16:25 turnin
drwxrwsr-x 3 sprenkles domain users 4.0K Jan 26 11:02 shared
drwxr-sr-x 6 sprenkles domain users 4.0K Jan 26 11:32 handouts

permissions owner group size date modified file name

28

28

1/26/22

14

Unix Permissions
•Categories: owner, group, others
•Permissions: read, write, execute

Jan 26, 2022 Sprenkle - CSCI397

sprenkle@fred:cs397$ ls -lrth
total 12K
drwxr-sr-x 20 sprenkles domain users 4.0K Jan 17 16:25 turnin
drwxrwsr-x 3 sprenkles domain users 4.0K Jan 26 11:02 shared
drwxr-sr-x 6 sprenkles domain users 4.0K Jan 26 11:32 handouts

permissions owner group size date modified file name

29

• What are the permissions on files within handouts?
• In the permissions, how can we distinguish between an executable

file and directory?
• What does it mean for a file to be executable?

29

Permissions

Jan 26, 2022 Sprenkle - CSCI397 30

30

1/26/22

15

(Partial) Linux File Structure

Jan 26, 2022 Sprenkle - CSCI397

usr etc csci

/

username

Your home
directories

cs397

Paths through
tree

“root” directory

home

courses

cs397

handouts turnin

31

31

(Partial) Linux File Structure

Jan 26, 2022 Sprenkle - CSCI397

usr etc csci

/

username

Your home
directories

cs397

Paths through
tree

“root” directory

home

courses

cs397

handouts turnin
Permissions
for only you

to see
Permissions

for me to see
Permissions for
class to see

32

32

1/26/22

16

Utilities for Manipulating File Attributes
•chmod change file permissions
•chown change file owner
•chgrp change file group
•umask user file creation mode mask
•Only owner or super-user can change file

attributes
•Upon creation, default permissions given to file

modified by process’s umask value
Jan 26, 2022 Sprenkle - CSCI397 33

33

Changing Permissions
•chmod command
Ø Syntax: chmod [options] <mode> <file(s)>

•Examples:
chmod u+x script.sh
chmod a-w readDir
chmod -R ug+r myDir

Recursive

Jan 26, 2022 Sprenkle - CSCI397

Shorthand Meaning
u User/owner
g Group
o Others
a All
r Read permission
w Write permission
x eXecutable permission

34

34

1/26/22

17

chmod command
•Symbolic access modes {u,g,o} / {r,w,x}
Ø example: chmod +r file

•Octal access modes
ØWhat’s the pattern?

Jan 26, 2022 Sprenkle - CSCI397 35

octal read write execute
0 No No No
1 No No Yes
2 No Yes No
3 No Yes Yes
4 Yes No No
5 Yes No Yes
6 Yes Yes No
7 Yes Yes Yes

35

Changing Ownership, Group
•To change the owner of a file:
Øchown <owner> <file(s)>
Øchown <owner:group> <file(s)>
Ø-R recursive option available

•To change the group of a file
Øchgrp <group> <file(s)>
Ø-R recursive option available

Jan 26, 2022 Sprenkle - CSCI397 36

36

1/26/22

18

REGULAR EXPRESSIONS

Jan 26, 2022 Sprenkle - CSCI397 37

37

What Is a Regular Expression?
• A regular expression (regex) describes a set of possible input

strings
• Regular expressions descend from a fundamental concept in

Computer Science called finite automata theory
• Regular expressions are endemic to UNIX

Ø vi, ed, sed, and emacs
Ø awk, tcl, perl and Python
Ø grep, egrep, fgrep
Ø Compilers

• Search functionality à often can check a box for regular
expressions
Jan 26, 2022 Sprenkle - CSCI397 38

38

1/26/22

19

Regular Expressions
•The simplest regular expressions are a string of

literal characters to match
•The string matches the regular expression if it

contains the substring

Jan 26, 2022 Sprenkle - CSCI397 39

39

CS397 rocks.

match

CS397 sucks.

match

CS397 is okay.
no match

regular expression c k s

Jan 26, 2022 Sprenkle - CSCI397 40

40

1/26/22

20

Regular Expressions
•A regular expression can match a string in more

than one place

Jan 26, 2022 Sprenkle - CSCI397

Scrapple from the apple.

match 1 match 2

a p p l e

41

regular expression

41

Regular Expressions
•The . regular expression can be used to match

any character.

Jan 26, 2022 Sprenkle - CSCI397

match 1 match 2

o .

I'm picking out a Thermos for you

42

regular expression

match 3

42

1/26/22

21

Character Classes
•Character classes [] can be used to match any

specific set of characters.

Jan 26, 2022 Sprenkle - CSCI397

sick beat with a brat on a boat

match 1 match 2

regular expression b [eor] a t

match 3

43

43

Negated Character Classes
•Character classes can be negated with the [^]

syntax.

Jan 26, 2022 Sprenkle - CSCI397

match

regular expression b [^eo] a t

44

sick beat with a brat on a boat

44

1/26/22

22

More About Character Classes
•[aeiou] will match any of the characters a, e, i, o, or u
•[bB]ash will match bash or Bash
• Ranges can be specified in character classes

Ø [1-9] is the same as [123456789]
Ø [abcde] is equivalent to [a-e]
Ø You can also combine multiple ranges
•[abcde123456789] is equivalent to [a-e1-9]

Ø Note that the - character has a special meaning in a character class
but only if it is used within a range,
[-123] would match the characters -, 1, 2, or 3

Jan 26, 2022 Sprenkle - CSCI397 45

45

Named Character Classes
•Commonly used character classes can be referred

to by name (alpha, lower, upper, alnum, digit,
punct, cntrl)

•Syntax [:name:]
Ø [a-zA-Z] à [[:alpha:]]
Ø [a-zA-Z0-9] à [[:alnum:]]
Ø [45a-z] à [45[:lower:]]

•Important for portability across languages
Jan 26, 2022 Sprenkle - CSCI397 46

46

1/26/22

23

Regular Expressions
•Most of what we went through can be used in

commands, like ls, cp, rm (be careful!), …
Ø I test the rm command with ls first

•Practice
Ø List the files that begin with D
Ø List that files that end in .java
Ø List the files that begin with D or d
Ø List the files that begin with a, b, c, or d and end in .py

Jan 26, 2022 Sprenkle - CSCI397 47

47

