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Objectives
•Backend: Data stores
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Review: Software Engineering at Google
•How is software engineering at Google different 

than software engineering in academia?
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Review: Google’s Concerns
•May boil down to size, scale, and time
•Availability
•Change over time
•How many bugs can be in your release?
•How many features should you support?
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FULL-STACK DEVELOPMENT: DATA STORAGE
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Web Software Architecture Overview
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Web Software Architecture Overview
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Web APIs 
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Data

API Web services

Databases Filesystem NoSQL
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RELATIONAL DATABASES
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Database Overview
•Store data in such a way to allow efficient storage, 

search, and update
•Relational Data Model - currently most popular type 

of database
Ø Different vendors: PostgreSQL, Oracle, MySQL, DB2, 

MSSQL
Ø Data is stored in tables
Ø Attributes: column names (one word)
Ø Entities: rows
Ø Often contain primary key: 

a set of columns that uniquely identify a row
Mar 7, 2022 Sprenkle - CSCI397
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Example Students Table
•id is the primary key
•Attributes: Columns
•Entities: rows

Mar 7, 2022 Sprenkle - CSCI397

id lastName firstName gradYear major
10011 Aaronson Aaron 2024 CSCI

43123 Brown Allison 2023 ENGL

Attributes

En
tit
ie
s
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Courses Table
•Primary key is ( Department, Number )
Ø As a group, these uniquely identify a row
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department number name description

CSCI 101 Survey of 
Computer Science A survey of …

CSCI 111 Fundamentals of 
Programming I

An introduction 
to …
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SQL: STRUCTURED QUERY LANGUAGE

Mar 7, 2022 Sprenkle - CSCI397

12



3/7/22

7

SQL: Structured Query Language
•Standardized language for manipulating and 

querying relational databases
ØMay be slightly different depending on DB vendor

•Pronounced “S-Q-L” or “Sequel”

Mar 7, 2022 Sprenkle - CSCI397
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SQL: Structured Query Language
•Reserved words are not case-sensitive
Ø I will tend to write them in all-caps and bold
Ø Tables, column names - may be case sensitive

•Commands end in ;
Ø Can have extra white space, new lines in commands
Ø End when see ;

•Represent string literals with single quotes ''
Mar 7, 2022 Sprenkle - CSCI397
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SELECT Command
•Queries the database
•Returns result as a virtual table
•Syntax:

Ø Columns, tables separated by commas
Ø Can select all columns with *
Ø Where clause specifies constraints on what to select from 

the table

Mar 7, 2022 Sprenkle - CSCI397

SELECT column_names
FROM table_names [WHERE condition];

Optional

15

SELECT Examples
• SELECT * FROM Students;

• SELECT lastName, major FROM Students;   
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id lastName firstName gradYear major
10011 Aaronson Aaron 2018 CSCI

43123 Brown Allison 2017 ENGL

lastName major
Aaronson CSCI

Brown ENGL

Virtual Tables

16
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WHERE Conditions
•Limits which rows you get back
•Comparison operators: =, >, >=, <, <=, <>
•Can contain AND for compound conditions
•LIKE matches a string against a pattern
Ø Wildcard: % , matches any sequence of 0 or more 

characters
•IN : match any
•BETWEEN: Like comparison using AND, inclusive

Mar 7, 2022 Sprenkle - CSCI397
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SELECT Examples
•What do these select statements mean?
Ø SELECT * FROM students 
WHERE major='CSCI';

Ø SELECT firstName, lastName
FROM students WHERE major='CSCI' 
AND gradYear=2017;

Ø SELECT lastName FROM students 
WHERE firstName LIKE 'Eli%';

Mar 7, 2022 Sprenkle - CSCI397
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SELECT Examples
•What do these select statements mean?
Ø SELECT lastName FROM students WHERE
major IN ('CSCI', 'PHYS', 'MATH');

Ø SELECT lastName FROM students 
WHERE major NOT IN ('CSCI', 'PHYS', 
'MATH');

Ø SELECT firstName FROM students 
WHERE gradYear BETWEEN 2022 AND 2025;

Mar 7, 2022 Sprenkle - CSCI397
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Set vs Bag Semantics

Mar 7, 2022 Sprenkle - CSCI397
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Set vs Bag Semantics
•Bag
ØDuplicates allowed
ØNumber of duplicates is significant
ØUsed by SQL by default

•Set
ØNo duplicates
ØUse keyword DISTINCT

Mar 7, 2022 Sprenkle - CSCI397
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Set vs Bag

Mar 7, 2022 Sprenkle - CSCI397

SELECT lastName 
FROM Students;

SELECT DISTINCT lastName
FROM Students;

lastName
Smith
…
Smith
Jones
Jones

lastName
Smith
Jones

22
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Aggregates
•Standard SQL aggregate functions: COUNT, 
SUM, AVG, MIN, MAX

•Can only used in the SELECT part of query

•Example
ØSELECT COUNT(*), AVG(GPA) 
FROM students WHERE gradYear=2022;

Mar 7, 2022 Sprenkle - CSCI397
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ORDER BY
•Last operation performed, last in query
•Orders:
ØASC = ascending
ØDESC = descending

•Example
ØSELECT firstName, lastName
FROM Students WHERE gradYear=2022
ORDER BY GPA DESC;

Mar 7, 2022 Sprenkle - CSCI397

24



3/7/22

13

Majors Table
•Another table to keep track of majors
•Primary Key: id

Mar 7, 2022 Sprenkle - CSCI397

id name department
1 ART-BA ART

2 ARTH-BA ART

25

Changes Students Table
•Use an id to identify major (primary key)

Mar 7, 2022 Sprenkle - CSCI397

id name department
1 ART-BA ART

2 ARTH-BA ART

id last Name first Name gradYear majorID
10011 Aaronson Aaron 2018 123

43123 Brown Allison 2017 157

Majors:

Students:
Foreign Key

26
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JOIN Queries
•Join two tables on an attribute

Mar 7, 2022 Sprenkle - CSCI397

SELECT lastName, name
FROM Students, Majors 
WHERE Students.majorID=Majors.id;

id name department
1 ART-BA ART
2 ARTH-BA ART

id last Name first Name gradYear majorID
10011 Aaronson Aaron 2018 123

43123 Brown Allison 2017 157

Majors:

Students:

27

JOIN Queries: Creates a Cross-Product
•Join two tables on an attribute
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every entry in Majors 
x 

every entry in Students

id name department
1 ART-BA ART
2 ARTH-BA ART

id last Name first Name gradYear majorID
10011 Aaronson Aaron 2018 123

43123 Brown Allison 2017 157

Majors:

Students:

28
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Join Queries

• Example:
Ø Performing a select on 3 

tables, each with two rows
Ø SELECT * FROM A, B, C

Ø Results in this virtual table:  

Mar 7, 2022 Sprenkle - CSCI397

A1
A2

B1
B2

C1
C2

A1 B1 C1
A1 B1 C2
A1 B2 C1
A1 B2 C2
A2 B1 C1
A2 B1 C2
A2 B2 C1
… … …

Does a cross product of the joined tables

A B C

29

Join Queries

Mar 7, 2022 Sprenkle - CSCI397

Id Nam
e

Dept Id LNa
me

FNa
me

…

M1 S1
M1 S2
M1 …
M1 Sn
M2 S1
M2 S2
M2 …
M2 Sn
… …

1) Does a cross product of the joined tables

SELECT lastName, name
FROM Majors, Students 
WHERE
Students.majorID=Majors.id;

30
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JOIN Queries
2) Keep only the rows that satisfy the WHERE clause
3) Keep only the requested columns

Mar 7, 2022 Sprenkle - CSCI397

SELECT lastName, name
FROM Students, Majors 
WHERE Students.majorID=Majors.id;

lastName name

Aaronson CSCI

Brown ENGL

From Students From Majors

31

JOIN Queries
•What if two joined tables have the same column 

name?
Ø Prepend the column with its table name and a ., i.e., 
TableName.columnName

Mar 7, 2022 Sprenkle - CSCI397

SELECT Students.lastName, Majors.name
FROM Students, Majors 
WHERE Students.majorID=Majors.id;

32
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What if Students Have Multiple Majors?
•We don’t necessarily want to add another 

column to Students table
ØWhat if student has 3 majors?

•Example of Many to Many Relationship
•Solution: Create StudentsToMajors table: 

Mar 7, 2022 Sprenkle - CSCI397

studentID majorID

435 243

435 232

Primary Key:
(studentID, majorID)
Foreign Keys from 
Students, Majors Tables

33

JOIN Query Example
•To find the students’ majors with this new 
StudentsToMajors table, we would query

•Would create cross product of all 3 tables, then 
keep only the rows that satisfy the where clause, 
and only include the specified columns
Mar 7, 2022 Sprenkle - CSCI397

SELECT Students.lastName, Majors.name
FROM Students, Majors, StudentsToMajors
WHERE Students.id=StudentsToMajors.studentID AND
Majors.id = StudentsToMajors.majorID;

34
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INSERT Statements
•You can add rows to a table

•Preferred Method: include column names
ØDon’t depend on order

Mar 7, 2022 Sprenkle - CSCI397

INSERT INTO Majors VALUES
( 354, 'BioInformatics-BS', 'CSCI');

INSERT INTO Majors (id, name, department)
VALUES ( 354, 'BioInformatics-BS', 'CSCI');

Assumes filling in all values, in column order

35

INSERT Statements
•Automatically create ids

•If table is set up appropriately, let the DB handle 
creating unique ids: 

Mar 7, 2022 Sprenkle - CSCI397

INSERT INTO Majors (id, name, department) 
VALUES ( nextval('majors_sequence'), 
'Bio-Informatics-BS', 'CSCI' );

INSERT INTO Majors (name, department) 
VALUES ( 'Bio-Informatics-BS', 'CSCI' );

36
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UPDATE Statement
•You can modify rows of a table
•Use WHERE condition to specify which rows to 

update
•Example: Update a student’s married name

•Example: Update all first years to undeclared

Mar 7, 2022 Sprenkle - CSCI397

UPDATE Students SET
LastName='Smith-Jones' WHERE id=12;

UPDATE Students SET majorID=345 
WHERE gradYear=2025;

37

DELETE Statement
•You can delete rows from a table

•Example

Mar 7, 2022 Sprenkle - CSCI397

DELETE FROM table [ WHERE condition ];

DELETE FROM EnrolledStudents WHERE 
hasPrerequisites=False AND course_id=456;

38
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Using a Database
•DBMS: Database management system

•Using PostgreSQL in this class
Ø Free, open source

•Slight differences in syntax between DBMSs

•DBMS can contain multiple databases
Ø Need to say which DB you want to use

Mar 7, 2022 Sprenkle - CSCI397
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Designing a DB
•Design tables to hold your data
Ø Data’s name and types

•Similar to OO design
Ø No duplication of data
Ø Have pointers to info in other tables

•Main difference: no lists
Ø If you think “list”, think of a OneToMany or a 

ManyToMany table that contains the relationships 
between the data

Mar 7, 2022 Sprenkle - CSCI397
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Standard Data Types
•Standard to SQL
Ø CHAR - fixed-length character
Ø VARCHAR - variable-length character

• Requires more processing than CHAR
Ø INTEGER - whole numbers
ØNUMERIC
ØNames for types in specific DB may vary

•More data types available in each DB
Mar 7, 2022 Sprenkle - CSCI397
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PostgreSQL Data Types
•Names for standard data types
Ø Numeric: int, smallint, real, double 
precision

Ø Strings
•char(N) - fixed length of N (padded)
•varchar(N) - variable length, with a max of N
•text - variable unlimited length 

•Additional useful data types
Ø date, time, timestamp, and interval
Ø timestamp includes both date and time

May 6, 2021 Sprenkle - CSCI335 42
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Constraints
•PRIMARY KEY may not have null values
•UNIQUE may have null values

Ø Example: username when have a separate id
•FOREIGN KEY

Ø Use key from another (“foreign”) table
Ø Example: shopping cart has its own id; references the user’s id as 

owner
•CHECK

Ø value in a certain column must satisfy a Boolean (truth-value) 
expression

Ø Example: GPA >= 0

May 6, 2021 Sprenkle - CSCI335 43
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Creating a Table
•Example:

May 6, 2021 Sprenkle - CSCI335 44

CREATE TABLE weather (
city            varchar(80),
temp_lo         int,       -- low temperature
temp_hi         int,       -- high temperature
prcp            real,      -- precipitation
date            date

);

44
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Interfacing with a Database
•Interactive mode
Ø Run client
Ø Enter SQL statements, one at a time

•Batch mode/command-line
Ø Script/file of SQL commands
Ø Direct to database

•Programming Language APIs 
Ø Examples: JDBC, psycopg2

Mar 7, 2022 Sprenkle - CSCI397

psql dbname < mycmds.sql

psql dbname

45

Looking Ahead
•Anthony Danalis on PAPI
Ø See Canvas for assignment, questions

•Friday: Data Center tour
ØMeet up there (behind law school parking lot) at the 

time you picked

•Using Docker to try out database
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