
3/7/22

1

Objectives
•Backend: Data stores

Mar 7, 2022 Sprenkle - CSCI397

1

Review: Software Engineering at Google
•How is software engineering at Google different

than software engineering in academia?

Mar 7, 2022 Sprenkle - CSCI397

2

3/7/22

2

Review: Google’s Concerns
•May boil down to size, scale, and time
•Availability
•Change over time
•How many bugs can be in your release?
•How many features should you support?

Mar 7, 2022 Sprenkle - CSCI397

3

FULL-STACK DEVELOPMENT: DATA STORAGE

Mar 7, 2022 Sprenkle - CSCI397

4

3/7/22

3

Web Software Architecture Overview

Mar 7, 2022 Sprenkle - CSCI397

Data

Server-side Code

User Interface, Client-side Code
Ba

ck
en

d

5

Web Software Architecture Overview

Mar 7, 2022 Sprenkle - CSCI397

Data

Server-side Code

User Interface, Client-side Code

Ba
ck

en
d

Databases Filesystem NoSQL

6

3/7/22

4

Web APIs

Mar 7, 2022 Sprenkle - CSCI397

Data

API Web services

Databases Filesystem NoSQL

7

RELATIONAL DATABASES

Mar 7, 2022 Sprenkle - CSCI397

8

3/7/22

5

Database Overview
•Store data in such a way to allow efficient storage,

search, and update
•Relational Data Model - currently most popular type

of database
Ø Different vendors: PostgreSQL, Oracle, MySQL, DB2,

MSSQL
Ø Data is stored in tables
Ø Attributes: column names (one word)
Ø Entities: rows
Ø Often contain primary key:

a set of columns that uniquely identify a row
Mar 7, 2022 Sprenkle - CSCI397

9

Example Students Table
•id is the primary key
•Attributes: Columns
•Entities: rows

Mar 7, 2022 Sprenkle - CSCI397

id lastName firstName gradYear major
10011 Aaronson Aaron 2024 CSCI

43123 Brown Allison 2023 ENGL

Attributes

En
tit
ie
s

10

3/7/22

6

Courses Table
•Primary key is (Department, Number)
Ø As a group, these uniquely identify a row

Mar 7, 2022 Sprenkle - CSCI397

department number name description

CSCI 101 Survey of
Computer Science A survey of …

CSCI 111 Fundamentals of
Programming I

An introduction
to …

11

SQL: STRUCTURED QUERY LANGUAGE

Mar 7, 2022 Sprenkle - CSCI397

12

3/7/22

7

SQL: Structured Query Language
•Standardized language for manipulating and

querying relational databases
ØMay be slightly different depending on DB vendor

•Pronounced “S-Q-L” or “Sequel”

Mar 7, 2022 Sprenkle - CSCI397

13

SQL: Structured Query Language
•Reserved words are not case-sensitive
Ø I will tend to write them in all-caps and bold
Ø Tables, column names - may be case sensitive

•Commands end in ;
Ø Can have extra white space, new lines in commands
Ø End when see ;

•Represent string literals with single quotes ''
Mar 7, 2022 Sprenkle - CSCI397

14

3/7/22

8

SELECT Command
•Queries the database
•Returns result as a virtual table
•Syntax:

Ø Columns, tables separated by commas
Ø Can select all columns with *
Ø Where clause specifies constraints on what to select from

the table

Mar 7, 2022 Sprenkle - CSCI397

SELECT column_names
FROM table_names [WHERE condition];

Optional

15

SELECT Examples
• SELECT * FROM Students;

• SELECT lastName, major FROM Students;

Mar 7, 2022 Sprenkle - CSCI397

id lastName firstName gradYear major
10011 Aaronson Aaron 2018 CSCI

43123 Brown Allison 2017 ENGL

lastName major
Aaronson CSCI

Brown ENGL

Virtual Tables

16

3/7/22

9

WHERE Conditions
•Limits which rows you get back
•Comparison operators: =, >, >=, <, <=, <>
•Can contain AND for compound conditions
•LIKE matches a string against a pattern
Ø Wildcard: % , matches any sequence of 0 or more

characters
•IN : match any
•BETWEEN: Like comparison using AND, inclusive

Mar 7, 2022 Sprenkle - CSCI397

17

SELECT Examples
•What do these select statements mean?
Ø SELECT * FROM students
WHERE major='CSCI';

Ø SELECT firstName, lastName
FROM students WHERE major='CSCI'
AND gradYear=2017;

Ø SELECT lastName FROM students
WHERE firstName LIKE 'Eli%';

Mar 7, 2022 Sprenkle - CSCI397

18

3/7/22

10

SELECT Examples
•What do these select statements mean?
Ø SELECT lastName FROM students WHERE
major IN ('CSCI', 'PHYS', 'MATH');

Ø SELECT lastName FROM students
WHERE major NOT IN ('CSCI', 'PHYS',
'MATH');

Ø SELECT firstName FROM students
WHERE gradYear BETWEEN 2022 AND 2025;

Mar 7, 2022 Sprenkle - CSCI397

19

Set vs Bag Semantics

Mar 7, 2022 Sprenkle - CSCI397

20

3/7/22

11

Set vs Bag Semantics
•Bag
ØDuplicates allowed
ØNumber of duplicates is significant
ØUsed by SQL by default

•Set
ØNo duplicates
ØUse keyword DISTINCT

Mar 7, 2022 Sprenkle - CSCI397

21

Set vs Bag

Mar 7, 2022 Sprenkle - CSCI397

SELECT lastName
FROM Students;

SELECT DISTINCT lastName
FROM Students;

lastName
Smith
…
Smith
Jones
Jones

lastName
Smith
Jones

22

3/7/22

12

Aggregates
•Standard SQL aggregate functions: COUNT,
SUM, AVG, MIN, MAX

•Can only used in the SELECT part of query

•Example
ØSELECT COUNT(*), AVG(GPA)
FROM students WHERE gradYear=2022;

Mar 7, 2022 Sprenkle - CSCI397

23

ORDER BY
•Last operation performed, last in query
•Orders:
ØASC = ascending
ØDESC = descending

•Example
ØSELECT firstName, lastName
FROM Students WHERE gradYear=2022
ORDER BY GPA DESC;

Mar 7, 2022 Sprenkle - CSCI397

24

3/7/22

13

Majors Table
•Another table to keep track of majors
•Primary Key: id

Mar 7, 2022 Sprenkle - CSCI397

id name department
1 ART-BA ART

2 ARTH-BA ART

25

Changes Students Table
•Use an id to identify major (primary key)

Mar 7, 2022 Sprenkle - CSCI397

id name department
1 ART-BA ART

2 ARTH-BA ART

id last Name first Name gradYear majorID
10011 Aaronson Aaron 2018 123

43123 Brown Allison 2017 157

Majors:

Students:
Foreign Key

26

3/7/22

14

JOIN Queries
•Join two tables on an attribute

Mar 7, 2022 Sprenkle - CSCI397

SELECT lastName, name
FROM Students, Majors
WHERE Students.majorID=Majors.id;

id name department
1 ART-BA ART
2 ARTH-BA ART

id last Name first Name gradYear majorID
10011 Aaronson Aaron 2018 123

43123 Brown Allison 2017 157

Majors:

Students:

27

JOIN Queries: Creates a Cross-Product
•Join two tables on an attribute

Mar 7, 2022 Sprenkle - CSCI397

every entry in Majors
x

every entry in Students

id name department
1 ART-BA ART
2 ARTH-BA ART

id last Name first Name gradYear majorID
10011 Aaronson Aaron 2018 123

43123 Brown Allison 2017 157

Majors:

Students:

28

3/7/22

15

Join Queries

• Example:
Ø Performing a select on 3

tables, each with two rows
Ø SELECT * FROM A, B, C

Ø Results in this virtual table:

Mar 7, 2022 Sprenkle - CSCI397

A1
A2

B1
B2

C1
C2

A1 B1 C1
A1 B1 C2
A1 B2 C1
A1 B2 C2
A2 B1 C1
A2 B1 C2
A2 B2 C1
… … …

Does a cross product of the joined tables

A B C

29

Join Queries

Mar 7, 2022 Sprenkle - CSCI397

Id Nam
e

Dept Id LNa
me

FNa
me

…

M1 S1
M1 S2
M1 …
M1 Sn
M2 S1
M2 S2
M2 …
M2 Sn
… …

1) Does a cross product of the joined tables

SELECT lastName, name
FROM Majors, Students
WHERE
Students.majorID=Majors.id;

30

3/7/22

16

JOIN Queries
2) Keep only the rows that satisfy the WHERE clause
3) Keep only the requested columns

Mar 7, 2022 Sprenkle - CSCI397

SELECT lastName, name
FROM Students, Majors
WHERE Students.majorID=Majors.id;

lastName name

Aaronson CSCI

Brown ENGL

From Students From Majors

31

JOIN Queries
•What if two joined tables have the same column

name?
Ø Prepend the column with its table name and a ., i.e.,
TableName.columnName

Mar 7, 2022 Sprenkle - CSCI397

SELECT Students.lastName, Majors.name
FROM Students, Majors
WHERE Students.majorID=Majors.id;

32

3/7/22

17

What if Students Have Multiple Majors?
•We don’t necessarily want to add another

column to Students table
ØWhat if student has 3 majors?

•Example of Many to Many Relationship
•Solution: Create StudentsToMajors table:

Mar 7, 2022 Sprenkle - CSCI397

studentID majorID

435 243

435 232

Primary Key:
(studentID, majorID)
Foreign Keys from
Students, Majors Tables

33

JOIN Query Example
•To find the students’ majors with this new
StudentsToMajors table, we would query

•Would create cross product of all 3 tables, then
keep only the rows that satisfy the where clause,
and only include the specified columns
Mar 7, 2022 Sprenkle - CSCI397

SELECT Students.lastName, Majors.name
FROM Students, Majors, StudentsToMajors
WHERE Students.id=StudentsToMajors.studentID AND
Majors.id = StudentsToMajors.majorID;

34

3/7/22

18

INSERT Statements
•You can add rows to a table

•Preferred Method: include column names
ØDon’t depend on order

Mar 7, 2022 Sprenkle - CSCI397

INSERT INTO Majors VALUES
(354, 'BioInformatics-BS', 'CSCI');

INSERT INTO Majors (id, name, department)
VALUES (354, 'BioInformatics-BS', 'CSCI');

Assumes filling in all values, in column order

35

INSERT Statements
•Automatically create ids

•If table is set up appropriately, let the DB handle
creating unique ids:

Mar 7, 2022 Sprenkle - CSCI397

INSERT INTO Majors (id, name, department)
VALUES (nextval('majors_sequence'),
'Bio-Informatics-BS', 'CSCI');

INSERT INTO Majors (name, department)
VALUES ('Bio-Informatics-BS', 'CSCI');

36

3/7/22

19

UPDATE Statement
•You can modify rows of a table
•Use WHERE condition to specify which rows to

update
•Example: Update a student’s married name

•Example: Update all first years to undeclared

Mar 7, 2022 Sprenkle - CSCI397

UPDATE Students SET
LastName='Smith-Jones' WHERE id=12;

UPDATE Students SET majorID=345
WHERE gradYear=2025;

37

DELETE Statement
•You can delete rows from a table

•Example

Mar 7, 2022 Sprenkle - CSCI397

DELETE FROM table [WHERE condition];

DELETE FROM EnrolledStudents WHERE
hasPrerequisites=False AND course_id=456;

38

3/7/22

20

Using a Database
•DBMS: Database management system

•Using PostgreSQL in this class
Ø Free, open source

•Slight differences in syntax between DBMSs

•DBMS can contain multiple databases
Ø Need to say which DB you want to use

Mar 7, 2022 Sprenkle - CSCI397

39

Designing a DB
•Design tables to hold your data
Ø Data’s name and types

•Similar to OO design
Ø No duplication of data
Ø Have pointers to info in other tables

•Main difference: no lists
Ø If you think “list”, think of a OneToMany or a

ManyToMany table that contains the relationships
between the data

Mar 7, 2022 Sprenkle - CSCI397

40

3/7/22

21

Standard Data Types
•Standard to SQL
Ø CHAR - fixed-length character
Ø VARCHAR - variable-length character

• Requires more processing than CHAR
Ø INTEGER - whole numbers
ØNUMERIC
ØNames for types in specific DB may vary

•More data types available in each DB
Mar 7, 2022 Sprenkle - CSCI397

41

PostgreSQL Data Types
•Names for standard data types
Ø Numeric: int, smallint, real, double
precision

Ø Strings
•char(N) - fixed length of N (padded)
•varchar(N) - variable length, with a max of N
•text - variable unlimited length

•Additional useful data types
Ø date, time, timestamp, and interval
Ø timestamp includes both date and time

May 6, 2021 Sprenkle - CSCI335 42

42

3/7/22

22

Constraints
•PRIMARY KEY may not have null values
•UNIQUE may have null values

Ø Example: username when have a separate id
•FOREIGN KEY

Ø Use key from another (“foreign”) table
Ø Example: shopping cart has its own id; references the user’s id as

owner
•CHECK

Ø value in a certain column must satisfy a Boolean (truth-value)
expression

Ø Example: GPA >= 0

May 6, 2021 Sprenkle - CSCI335 43

43

Creating a Table
•Example:

May 6, 2021 Sprenkle - CSCI335 44

CREATE TABLE weather (
city varchar(80),
temp_lo int, -- low temperature
temp_hi int, -- high temperature
prcp real, -- precipitation
date date

);

44

3/7/22

23

Interfacing with a Database
•Interactive mode
Ø Run client
Ø Enter SQL statements, one at a time

•Batch mode/command-line
Ø Script/file of SQL commands
Ø Direct to database

•Programming Language APIs
Ø Examples: JDBC, psycopg2

Mar 7, 2022 Sprenkle - CSCI397

psql dbname < mycmds.sql

psql dbname

45

Looking Ahead
•Anthony Danalis on PAPI
Ø See Canvas for assignment, questions

•Friday: Data Center tour
ØMeet up there (behind law school parking lot) at the

time you picked

•Using Docker to try out database

Mar 7, 2022 Sprenkle - CSCI397

46

