
1/9/17

1

CSCI397:	Tools	for	the		
So2ware	Life	Cycle	and	Beyond	

Jan	9,	2017	 Sprenkle	-	CSCI397	

So2ware	Tools	
• What	are	they?	

Ø What	is	the	goal	of	so2ware	tools?	

• Why	do	we	use	them?	
• Why	do	we	develop	them?	

Jan	9,	2017	 Sprenkle	-	CSCI397	

Goal:	ProducMvity	
• Many	available	tools	

Ø UNIX	&	UNIX-like	systems	(e.g.,	Linux)	
Ø Open-source	(Gnu,	Apache,	Eclipse)	
Ø Proprietary	
Ø Variety	of	purposes	

• Know	what	(mostly,	free)	tools	are	available,	
what	they	do,	how	to	use	them	

Jan	9,	2017	 Sprenkle	-	CSCI397	 Jan	9,	2017	 Sprenkle	-	CSCI397	

Goal:	AutomaMon	
• O2en	have	to	do	a	task	over	and	over	again	

Ø Time-intensive	to	do	by	hand	
Ø Shortcuts	aren’t	enough	

• What	we	want	
Ø Tools	to	make	tasks	easier	
Ø Scripts	to	be	able	to	repeat	the	tasks	easier	

1/9/17

2

Jan	9,	2017	 Sprenkle	-	CSCI397	

Main	Types	of	Tools	
• Command-line	
• Graphical/GUI	interfaces	

What	are	the	benefits	and	limitaMons		
of	each	type	of	tool?	

Jan	9,	2017	 Sprenkle	-	CSCI397	

Command-Line	Tools	
•  Benefits	

Ø  Flexible--lots	of	opMons	
Ø A2er	run	once,	can	run	again	in	same	terminal	using	up	arrow	

key	or	using	!command	
Ø  Tab-compleMon	
Ø AutomaMon:	Can	be	put	into	bash	scripts	and	repeated	

•  LimitaMons	
Ø  Requires	knowing	name	of	command	
Ø  Requires	knowing	syntax	of	command,	opMons	

•  Easy	to	screw	up!	
Ø  Slower	learning	curve	

Jan	9,	2017	 Sprenkle	-	CSCI397	

GUIs	
• Benefits	

Ø Require	less	knowledge	of	syntax	
Ø Generally:	faster	learning	curve	

• LimitaMons	
Ø Can	require	many	clicks	to	do	even	simple	operaMons		
Ø May	require	a	lot	of	set	up/configuraMon	
Ø Harder	to	automate,	repeat	tasks	

Jan	9,	2017	 Sprenkle	-	CSCI397	

Course	Content	
• Unix	tools	
• Bash	scripMng	
• So2ware	development	tools	

1/9/17

3

So2ware	Life	Cycle:	Waterfall	Model	

Our	Focus	

Jan	9,	2017	 Sprenkle	-	CSCI397	

IteraMve	Design	

Jan	9,	2017	 Sprenkle	-	CSCI397	

Design	

Evaluate	 Implement	

Test/	
Get	feedback	from	
users	

Deployment	

Requirements	

Jan	9,	2017	 Sprenkle	-	CSCI397	

Course	ObjecMves	
•  At	the	end	of	this	course,	you	will	be	able	to	

Ø Use	a	variety	of	Unix	tools	
Ø Apply	a	variety	of	tools	to	automate	many	tasks	
Ø Describe	the	use	of	state-of-the-art	so2ware	tools	for	

developing	and	maintaining	large	so2ware	systems,	based	on	
hands-on	experience	

Ø Discuss	when	best	to	use	different	tools,	the	limitaMons	of	the	
tools,	and	what	they	have	to	offer	

Ø Discuss	the	challenges	and	strategies	in	building	so2ware	
tools	

Ø  Communicate	technical	content	in	both	oral	and	wrihen	
forms	

Jan	9,	2017	 Sprenkle	-	CSCI397	

Non-Syllabus	Goals	
•  Improve	your	producMvity	
• Unix	confidence/proficiency	

Ø To	intermediate	user	

• Tool	confidence	
Ø Less	inMmidated	by	installing,	learning	new	tools	

• Resume	builder!	
Ø Impress	potenMal	employers,	advisors	

• Non-goal:	System	Administrator	

1/9/17

4

Jan	9,	2017	 Sprenkle	-	CSCI397	

ExpectaMons	
• Material	is	most	relevant	in	context	

Ø Need	to	make	it	relevant	to	you	
Ø What	would	you	like	to	do--now	or	in	the	future?	
Ø What	tools	interest	you?	

• AcMvely	explore	tools	
Ø Try	out	everything	we	do	
Ø Make	mistakes	and	learn	from	them	

Jan	9,	2017	 Sprenkle	-	CSCI397	

Grading	
• (47%)	Individual	programming,	reading,	and	
homework	assignments	

• (15%)	Quizzes	
• (30%)	Tool	DemonstraMons	
• (8%)	Professionalism:	parMcipaMon	and	
ahendance		

UNIX	

Jan	9,	2017	 Sprenkle	-	CSCI397	 Jan	9,	2017	 Sprenkle	-	CSCI397	

Our	Heroes:	UNIX	Developers	

Ken	Thompson	 Dennis	Ritchie	

1/9/17

5

Jan	9,	2017	 Sprenkle	-	CSCI397	

UNIX	Philosophy	
• Doug	McIlroy,	inventor	of	Unix	pipes,	a	founder	
of	Unix	tradiMon:	

This	is	the	Unix	philosophy:		
Write	programs	that	do	one	thing	and	do	it	well.		
Write	programs	to	work	together.			
Write	programs	to	handle	text	streams,	because	that	is	a	
universal	interface	

• This	is	usually	severely	abridged	to	“do	one	thing	
and	do	it	well”	

Jan	9,	2017	 Sprenkle	-	CSCI397	

UNIX	Philosophy	
• Make	each	program	do	one	thing	well	

RelaMon	to	so2ware	design	principles?	

Jan	9,	2017	 Sprenkle	-	CSCI397	

UNIX	Philosophy	
• Make	each	program	do	one	thing	well	

Ø More	complex	funcMonality	by	combining	programs	
Ø Make	every	program	a	filter	
Ø More	efficient	
Ø Beher	for	reuse	

Jan	9,	2017	 Sprenkle	-	CSCI397	

The	UNIX	Philosophy	
• ScripMng	increases	leverage	and	portability	

who | awk '{print $1}' | sort | uniq

List	the	usernames	of	a	system’s	current	users:	

We’ll	talk	more	about	piping	on	
Wednesday…	

1/9/17

6

Jan	9,	2017	 Sprenkle	-	CSCI397	

The	UNIX	Philosophy	
• Avoid	capMve	interfaces	

Ø The	user	of	a	program	isn’t	always	human	
Ø Look	nice,	but	code	is	big	and	ugly	
Ø Problems	with	scale	

• Silence	is	golden	
Ø Only	report	if	something	is	wrong	

• Think	hierarchically	

Jan	9,	2017	 Sprenkle	-	CSCI397	

UNIX	Highlights	/	ContribuMons	
• Portability	

Ø Because	implemented	in	C	rather	than	assembly	
language	(specific	to	machine),	ran	on	variety	of	
machines	

• TCP/IP	implementaMon	--	1984	
Ø Communicate	btw	different	machines	from	different	
vendors	

• Hierarchical	file	system;	the	file	abstracMon	
• MulMtasking	and	mulMuser	capability	for	
minicomputer	

Jan	9,	2017	 Sprenkle	-	CSCI397	

UNIX	Highlights	/	ContribuMons	
•  Inter-process	communicaMon	

Ø Pipes:	output	of	one	programmed	fed	into	input	of	
another	

• So2ware	tools	
• Development	tools	
• ScripMng	languages	

Jan	9,	2017	 Sprenkle	-	CSCI397	

Quotes	
•  "Unix	is	simple.	It	just	takes	a	genius	to	understand	its	
simplicity."	–	Dennis	Ritchie	

•  "UNIX	was	not	designed	to	stop	its	users	from	doing	
stupid	things,	as	that	would	also	stop	them	from	doing	
clever	things."	–	Doug	Gwyn	

•  "Unix	never	says	'please'."	–	Rob	Pike	
•  "Unix	is	user-friendly.	It	just	isn't	promiscuous	about	
which	users	it's	friendly	with."	–	Steven	King	

•  "Those	who	don't	understand	UNIX	are	condemned	to	
reinvent	it,	poorly."	–	Henry	Spencer	

1/9/17

7

UNIX	STRUCTURE	

Jan	9,	2017	 Sprenkle	-	CSCI397	 Jan	9,	2017	 Sprenkle	-	CSCI397	

The	OperaMng	System	
• The	government	of	your	computer	
• Kernel:	Performs	criMcal	system	funcMons	and	
interacts	with	the	hardware	
Ø Loaded	into	memory	during	the	boot	process,	and	
always	stays	in	physical	memory	

Ø Responsible	for	managing	CPU	and	memory	for	
processes,	managing	file	systems,	and	interacMng	
with	devices	

• Systems	uMliMes:	Programs	and	libraries	that	
provide	various	funcMons	through	system	calls	to	
the	kernel	

Jan	9,	2017	 Sprenkle	-	CSCI397	

UNIX	Structural	Layout	

User Space

Kernel

Devices

system calls

device drivers

shell scripts
 utilities

compilers

signal handler
 scheduler

swapper

terminal

disk

printer

RAM

C programs

Kernel:	lowest-
level,	or	'inner-

most'	
component	

Jan	9,	2017	 Sprenkle	-	CSCI397	

user	

	shell	and	uMliMes	

kernel	

hardware	

c	programs	
scripts	

ls  
ksh

gcc  
find

open()  
fork()  
exec()

UNIX	System	Structure	

1/9/17

8

Jan	9,	2017	 Sprenkle	-	CSCI397	

What	is	a	Shell?	
•  User	interface	to	the	operaMng	system	
•  A	program	like	any	other	
•  Command-line	interpreter	
•  FuncMonality:	

Ø  Execute	other	programs	
Ø Manage	files	
Ø Manage	processes	

•  Basic	form	of	shell:	
while <read command>:
parse command  
execute command	

hides	details	of	underlying	
operaMng	system	

Jan	9,	2017	 Sprenkle	-	CSCI397	

Most	Commonly	Used	Shells	
• /bin/sh 	The	Bourne	Shell	/	POSIX	shell	
• /bin/csh	 	C	shell	
• /bin/tcsh 	Enhanced	C	Shell	
• /bin/ksh 	Korn	shell	
• /bin/bash 	Free	ksh	clone	

Which	shell	do	we	use	in	the	lab?	

Jan	9,	2017	 Sprenkle	-	CSCI397	

Shell	InteracMve	Use	
• When	you	open	a	terminal,	you	interacMvely	use	
the	shell: 		
Ø Command	history	
Ø Command	line	ediMng	
Ø File	expansion	(tab	compleMon)	
Ø Command	expansion	
Ø Key	bindings	
Ø Job	control	

Jan	9,	2017	 Sprenkle	-	CSCI397	

Shell	ScripMng	
• A	set	of	shell	commands	that	consMtute	an	
executable	program	

• A	shell	script	is	a	regular	text	file	that	contains	
shell	or	UNIX	commands	

• Very	useful	for	automaMng	repeMMve	tasks	and	
administraMve	tools	and	for	storing	commands	
for	later	execuMon	

More	on	this	later…	

1/9/17

9

Jan	9,	2017	 Sprenkle	-	CSCI397	

Simple	Commands	
• Sequence	of	non-blank	arguments	separated	by	
blanks	or	tabs	

• 1st	argument	(numbered	0)	usually	specifies	the	
name	of	the	command	to	be	executed	

• Any	remaining	arguments:	
Ø Are	passed	as	arguments	to	that	command	
Ø Depending	on	command,	arguments	may	be	
filenames,	pathnames,	directories	or	special	opMons	

Ø Special	characters	are	interpreted	by	shell	

What	commands	do	you	know?	
Jan	9,	2017	 Sprenkle	-	CSCI397	

$ ls –l /bin  
-rwxr-xr-x 3 root root 63216 Sep 7 2006 zcat  
$

prompt	 command	 arguments	

Example	of	Simple	Command	

• Execute	a	basic	command	
• Parsing	into	command	and	arguments	is	called	
spli?ng	

Jan	9,	2017	 Sprenkle	-	CSCI397	

Types	of	Arguments	

• OpMons/Flags	
Ø ConvenMon:	-X	or	--longname	

• Parameters	
Ø May	be	files,	may	be	strings	
Ø Depends	on	command	

$ tar –c –v –f archive.tar main.c main.h

TODO	
• Check	out	the	course	web	site	

Jan	9,	2017	 Sprenkle	-	CSCI397	

