
1/18/17

1

Review:	Unix	Commands	
• We	talked	a	lot	about	security	and	file-related	
commands	
Ø Tell	me	about	them!	

• How	do	we	redirect	output	from	the	terminal	to	
a	file?	

Jan	18,	2017	 Sprenkle	-	CSCI397	

Today	
• More	file	system	commands	
• Process	commands	

Jan	18,	2017	 Sprenkle	-	CSCI397	

Tree	Walking	
• How	can	do	we	find	a	set	of	files?	
• One	possibility:	

Ø ls –lR /
• What	about	

Ø All	files	below	a	given	directory	in	the	hierarchy?	
Ø All	files	since	Jan	1,	2017?	
Ø All	files	larger	than	10K?	

Jan	18,	2017	 Sprenkle	-	CSCI397	

find uUlity	
• find <pathlist> <expression>
• find	recursively	descends	through	pathlist	and	
applies	expression	to	every	file	

• expression	can	be:	
Ø -name	pa-ern 		

• true	if	file	name	matches	paVern.	PaVern	may	include	
shell	paVerns	such	as	*,	must	be	in	quotes	to	suppress	
shell	interpretaUon	

• find / -name '*.java’
• find ~ -name "*.py"

Ø …

Jan	18,	2017	 Sprenkle	-	CSCI397	

What	do	these	commands	do?	

1/18/17

2

find uUlity	(conUnued)	
•  -perm	[+-]mode	

Ø  Find	files	with	given	access	mode,	mode	must	be	in	octal.		
Eg:	find . –perm 755	

•  -user	userid/username	
Ø  Find	by	owner	userid	or	username	

•  -atime n
Ø  File		was		last		accessed	n*24	hours	ago.		When	find	figures	

out	how	many	24-hour	periods	ago	the	file	was	last	
accessed,		any	fracUonal	part	is	ignored	

Ø  To	match -atime +1,	a	file	has	to	have	been	accessed	at	
least	two	days	ago.	

•  -size	size	
Ø  File	size	is	at	least	size	

• many	more…	
Jan	18,	2017	 Sprenkle	-	CSCI397	

find:	logical	operaUons	

Jan	18,	2017	 Sprenkle	-	CSCI397	

Logical	Opera-on	 Func-onality	

! expression	 returns	the	logical	negaUon	of	
expression	

op1 -a op2	 matches	both	paVerns	op1	and	op2	

op1 -o op2	 matches	either	op1	or	op2	

() 	 group	expressions	together		

find:	acUons	
• -print 	prints	out	the	name	of	the	current	file	
(default)	

• -exec	cmd	
Ø Executes	cmd,	where	cmd	must	be	terminated	by	an	
escaped	semicolon	(\; or	';’)	

Ø If	you	specify	{}	as	a	command	line	argument,	it	is	
replaced	by	the	name	of	the	current	file	just	found	

Ø exec	executes	cmd	once	per	file	
Ø Example:	

• find . –name "*~" -exec ls -l {} \;

Jan	18,	2017	 Sprenkle	-	CSCI397	

What	does	this	command	do?	

find	Examples	
•  Find	all	files	beneath	home	directory	beginning	with	f	

Ø find ~ -name 'f*'
•  Find	all	files	beneath	home	directory	modified	within	last	24	

hours	
Ø find ~ -mtime 0

•  Find	all	files	beneath	home	directory	larger	than	10K	
Ø find ~ -size 10k

•  Count	words	in	files	under	home	directory	
Ø find ~ -exec wc -w {} \;

•  Remove	core	files	
Ø find / -name core –exec rm {} \;

Jan	18,	2017	 Sprenkle	-	CSCI397	

1/18/17

3

PracUcal	Example	
• Problem	opening	Firefox	“another	session	is	
already	running”	

• SoluUon:	need	to	remove	the	“lock”	files	in	your	
~/.mozilla directory	

• But	where	are	those	files?	
• And	how	do	you	delete	them?	

Jan	18,	2017	 Sprenkle	-	CSCI397	

PracUcal	Example	
• Problem	opening	Firefox	“another	session	is	
already	running”	

• SoluUon:	need	to	remove	the	“lock”	files	in	your	
~/.mozilla directory	

• But	where	are	those	files?	
Ø Try:	find ~/.mozilla –name "*lock*"	

• And	how	do	you	delete	them?	
Ø find ~/.mozilla –name "*lock" –exec
rm {} \;

Jan	18,	2017	 Sprenkle	-	CSCI397	

diff:	comparing	two	files	
• diff:	compares	two	files	and	outputs	a	descripUon	of	
their	differences	
Ø Usage:	diff [options] file1 file2
Ø  -i :	ignore	case	
Ø -u :	human	readable	
Ø -bB :	ignore	white	space	

apples  
oranges  
walnuts

apples  
oranges  
grapes

$ diff list1 list2  
3c3  
< walnuts  

> grapes

Jan	18,	2017	 Sprenkle	-	CSCI397	

Other	file	comparison	uUliUes	
• cmp

Ø Tests	two	files	for	equality	
Ø  If	equal,	nothing	returned.		If	different,	locaUon	of	first	
differing	byte	returned	

Ø Faster	than	diff for	checking	equality	
• comm

Ø Reads	two	files	and	outputs	three	columns:	
•  Lines	in	first	file	only	
•  Lines	in	second	file	only	
•  Lines	in	both	files	

Ø Must	be	sorted	
Ø OpUons:	fields	to	suppress	([-123])	

Jan	18,	2017	 Sprenkle	-	CSCI397	

1/18/17

4

CONTROL-COMMANDS	

Jan	18,	2017	 Sprenkle	-	CSCI397	

Control-Commands	

Jan	18,	2017	 Sprenkle	-	CSCI397	

Control	+		 Func-on	
c	 Interrupt	or	break	job;	stops	prinUng	and	

returns	to	UNIX	
z	
	

Suspend	current	job	
		bg to	run	in	background	

h	 Erase	or	backspace	character	
s	 Freezes	screen	
q	 Unfreezes	screen	
u	 Erase	everything	on	line	before	this	
w	 Erase	previous	word	
k	 Erase	remainder	of	line	

PROCESSES	

Jan	18,	2017	 Sprenkle	-	CSCI397	

Unix	Processes	
• Process:	An	enUty	of	execuUon	
• UNIX	can	execute	many	processes	
simultaneously	

• CreaUon	of	a	process	
Ø A	unique	process	id	(pid)	is	assigned	to	the	new	
process		

Ø Inherit,	create,	or	iniUalize	other	data	structures	
(e.g.,	file	tables,	I/O	table,	etc.)	

Jan	18,	2017	 Sprenkle	-	CSCI397	

1/18/17

5

Background	Jobs	
• By	default,	when	execuUng	a	command	in	the	
shell,	the	shell	will	wait	for	the	command	to	exit	
before	prinUng	out	the	next	prompt	

• Trailing	a	command	with	&	allows	the	shell	and	
command	to	run	simultaneously	

Jan	18,	2017	 Sprenkle	-	CSCI397	

[sprenkle@fred ~]$ jedit &
[1] 7001

pid	

Ending	a	process	
• When	a	process	ends,	there	is	a	return	code	(an	
integer)	associated	with	the	process	
Ø 0	means	success	
Ø >0	represent	various	kinds	of	failure,	up	to	process	

Jan	18,	2017	 Sprenkle	-	CSCI397	

Process	InformaUon	Maintained	
• Working	directory	
•  File	descriptor	table	
•  Process	id	

Ø  number	used	to	idenUfy	process	

•  Process	group	id	
Ø  number	used	to	idenUfy	set	of	processes	

•  Parent	process	id	
Ø  process	id	of	the	process	that	created	the	process	

•  Umask	
Ø Default	file	permissions	for	new	file	

	
Jan	18,	2017	 Sprenkle	-	CSCI397	

Process	InformaUon	Maintained	
We	haven’t	talked	about	these	yet:	
•  EffecUve	user	and	group	id	

Ø  The	user	and	group	this	process	is	running	with	permissions	
as	

•  Real	user	and	group	id	
Ø  The	user	and	group	that	invoked	the	process	

•  Environment	variables	

Jan	18,	2017	 Sprenkle	-	CSCI397	

1/18/17

6

ps
• Report	a	snapshot	of	the	current	processes	
• By	default,	just	displays	processes	in	the	current	
terminal	
Ø Columns	by	default:	PID,	TTY,	TIME,	and	CMD	

•  	Accepted	opUons:	
Ø UNIX	opUons,	which	may	be	grouped	and	must	be	
preceded	by	a	dash	

Ø BSD	opUons,	which	may	be	grouped	and	must	not	be	
used	with	a	dash	

Ø GNU	long	opUons,	which	are	preceded	by	two	dashes	

Jan	18,	2017	 Sprenkle	-	CSCI397	

ps Examples

Jan	18,	2017	 Sprenkle	-	CSCI397	

Command	 Meaning	
ps	-e	 See	every	process	on	the	system	
ps	-ef	 See	every	process	on	the	system,	in	

full	lisUng	
ps	ax	 See	every	process	on	the	system	
ps	-ejH	 See	a	process	tree	

Pipe through more

Process	Subsystem	UUliUes	

Jan	18,	2017	 Sprenkle	-	CSCI397	

U-lity	 Func-onality	
top Monitors	tasks	
kill <pid> Terminate	a	process	

Use	-9 if	bugger	won’t	die	
nohup <cmd> Makes	a	command	immune	to	hangup	

and	terminal	signal	
sleep <#> Sleep	in	seconds	
nice <cmd> Run	processes	at	a	low	priority	 PROCESS	ENVIRONMENT	

Jan	18,	2017	 Sprenkle	-	CSCI397	

1/18/17

7

Environment	of	a	Process	
• A	set	of	key-value	pairs	associated	with	a	process	
• Keys	and	values	are	strings	
• Passed	to	children	processes	
• Cannot	be	passed	back	up	

Ø i.e.,	what	you	do	in	the	child	doesn’t	affect	parent	
• Common	examples:	

Ø PATH:	Where	to	search	for	programs	
Ø TERM:	Terminal	type	

Jan	18,	2017	 Sprenkle	-	CSCI397	

The	PATH environment	variable	
• Colon-separated	list	of	directories	
• Non-absolute	pathnames	of	executables	are	only	
executed	if	found	in	the	list	
Ø Searched	leq	to	right	

• Example:	

Jan	18,	2017	 Sprenkle	-	CSCI397	

$ example.sh  
-bash: example.sh not found  
$ PATH=$PATH:.  
$ example.sh  
hello!	

Having	.	In	Your	Path	

• What	not	to	do:	

$ ls  
foo  
$ foo  
sh: foo: not found

$ PATH=.:$PATH  
$ ls  
foo  
$ cd /tmp/  
$ ls  
Congratulations! Your files have been removed
and you have just sent email to Steve
challenging him to a fight.

$./foo  
Hello, foo.

Jan	18,	2017	 Sprenkle	-	CSCI397	

Shell	Variables	
• Shells	have	several	mechanisms	for	creaUng	
variables	

• A	variable	is	a	name	represenUng	a	string	value.		
Example:	PATH
Ø Shell	variables	can	save	Ume	and	reduce	typing	errors	

• Allow	you	to	store	and	manipulate	informaUon	
Ø Ex:	ls $DIR > $FILE

• Two	types:	local	and	environmental	
Ø Local	are	set	by	the	user	or	by	the	shell	itself	
Ø Environmental	come	from	the	operaUng	system	and	are	
passed	to	children	

Jan	18,	2017	 Sprenkle	-	CSCI397	

1/18/17

8

Shell	Variables	
•  Syntax	varies	by	shell	

Ø varname=value # sh, ksh, bash
Ø set varname = value # csh

	
•  To	access	the	value:		$varname

•  Turn	local	variable	into	environment:	
Ø All	child	processes	from	this	terminal	
Ø export varname # sh, ksh, bash
Ø setenv varname value # csh

Jan	18,	2017	 Sprenkle	-	CSCI397	

Environmental	Variables	

Jan	18,	2017	 Sprenkle	-	CSCI397	

Name	 Meaning	
$HOME Absolute	pathname	of	your	home	directory	
$PATH A	list	of	directories	to	search	for	
$MAIL Absolute		pathname	to	mailbox	
$USER Your	user	name	
$SHELL Absolute	pathname	of	login	shell	
$TERM Type	of	terminal	
$PS1 Prompt	

To	view	all	shell	variables,	set

Sesng	Environment	Variables	
•  You	can	set	environment	variables	in	your	
~/.bash_profile file	

•  Open	~/.bash_profile using	jedit	or	emacs	or	some	text	
editor	

•  Create	a	new	variable:	
Ø  CS397=/csdept/courses/cs397

•  Export	the	variable	
Ø  export CS397

•  In	terminal,	run	the	source command	to	load	your	new	
profile	
Ø  source ~/.bash_profile

•  Check	that	your	new	variable	was	created:	
Ø  echo $CS397

•  Use	the	variable	
Ø  cd $CS397

Jan	18,	2017	 Sprenkle	-	CSCI397	

Bash’s	ConfiguraUon	Files	

File	Name	 Purpose	
.bash_profile Read	and	executed	by	Bash	every	Ume	

you	log	into	the	system	
.bashrc Read	and	executed	by	Bash	every	Ume	

you	start	a	subshell	
.bash_logout Read	and	executed	every	Ume	a	login	

shell	exits	

Jan	18,	2017	 Sprenkle	-	CSCI397	

Open	your	.bash*	files	in	jedit	
NoUce	what	each	file	contains	

1/18/17

9

• Allow	you	to	rename	commands	or	type	
something	simple	instead	of	a	list	of	opUons	

• Can	be	defined	on	the	command	line,	
in	.bash_profile,	or	in	.bashrc

• To	see	all	defined	aliases	
Ø alias

• To	see	the	definiUon	for	an	alias	
Ø alias name

• To	create	an	alias	
Ø alias name=command

Jan	18,	2017	 Sprenkle	-	CSCI397	

Create	a	new	
• Open	~/.bashrc and	.bash_profile
• Move	your	definiUon	of	CS397 and	its	export	
from .bash_profile to	.bashrc

• Add	an	alias	called	cd397 (or	something	easy	
to	remember)	that	cds	to	the	CS397	directory	

Jan	18,	2017	 Sprenkle	-	CSCI397	

DeleUng	an		
• unalias name

• Just	for	the	current	shell/session	

Jan	18,	2017	 Sprenkle	-	CSCI397	

Assignment	1	
• More	pracUce,	due	Friday	

Jan	18,	2017	 Sprenkle	-	CSCI397	

