
1/27/17	

1	

Review:	Unix	Commands	
• What	are	regular	expressions?	

Ø What	can	we	represent	with	regular	expressions?		
Ø How	do	we	represent	those	things?	

• What	commands	can	we	use	for	searching?	
Ø What	are	the	differences	between	the	commands?	

Jan	25,	2017	 Sprenkle	-	CSCI397	 1	

Today	
• grep	
• bash	

Jan	25,	2017	 Sprenkle	-	CSCI397	 2	

grep	Family	Syntax	
grep [-hilnv] [-e expression] [filename]
egrep [-hilnv] [-e expression] [-f filename] [expression]

[filename]
fgrep [-hilnxv] [-e string] [-f filename] [string]

[filename]

Jan	25,	2017	 Sprenkle	-	CSCI397	

Op#on	 Meaning	

-h Do	not	display	filenames	
-i Ignore	case	
-l List	only	filenames	containing	matching	lines	
-n Precede	matching	line	with	its	line	number	
-v Select	non-matching	lines	
-x Match	whole	line	only	
-e expression Specify	expression	as	opVon	
-f filename Take	regular	expression	(egrep)	or	a	list	of	strings	(fgrep)	

from	filename	
3	

grep:	Backreferences	
• Backreferences	allow	us	to	refer	to	a	match	that	
was	made	earlier	in	a	regex	
Ø \n is	the	backreference	specifier,	where	n	is	a	
number	

Ø Looks	for	nth	subexpression	
• Example:	HTML	Tags	

Ø <h[1-6]>.*</h[1-6]> is	not	good	enough	to	
match	html	headers,	since	it	matches	<h1>Hello
world</h3>

Ø <h\([1-6]\)>.*</h\1> matches	what	we	
were	trying	to	match	before.		

Jan	25,	2017	 Sprenkle	-	CSCI397	 4	

1/27/17	

2	

grep:	Backreference	Examples	

Ø ^\([[:alpha:]]\{1,\}\) .* \1$

• Another	example:	
Ø "Mr \(dog\|cat\) came home to Mrs \1
and they went to visit Mr \(dog\|cat
\) and Mrs \2 to discuss the meaning
of life”

Jan	25,	2017	 Sprenkle	-	CSCI397	

What	text	should	this	match?	
5	

egrep doesn’t support backreferences, so need to use grep

grep:	Backreference	Examples	
• To	find	if	the	first	word	of	a	line	is	the	same	as	
the	last:	
Ø ^\([[:alpha:]]\{1,\}\) .* \1$
Ø \([[:alpha:]]\{1,\}\) matches	1	or	more	
le^ers	

• Another	example:	
Ø "Mr \(dog\|cat\) came home to Mrs \1
and they went to visit Mr \(dog\|cat
\) and Mrs \2 to discuss the meaning
of life”

Jan	25,	2017	 Sprenkle	-	CSCI397	

What	text	should	this	match?	
6	

Fun	with	the	DicVonary	
•  /usr/share/dict/words	contains	over	400,000	words	

Ø  egrep hh /usr/share/dict/words	
•  aarrghh	
•  Ahhiyawa	
•  archhead	
•  archheart	
…	

•  egrep	as	a	simple	spelling	checker:	Specify	plausible	
alternaVves	you	know	
egrep "n(ie|ei)ther" /usr/share/dict/words
Neither	

•  How	many	words	have	3	a’s	one	le^er	apart?	3	u’s?	

Jan	25,	2017	 Sprenkle	-	CSCI397	 7	

Fun	with	the	DicVonary	
•  How	many	words	have	3	a’s	one	le^er	apart?	

Ø  egrep a.a.a /usr/share/dict/words | wc –l
•  1632	

•  How	many	words	have	3	u’s	one	le^er	apart?	
Ø  egrep u.u.u /usr/share/dict/words | wc -l

•  84	

Jan	25,	2017	 Sprenkle	-	CSCI397	 8	

1/27/17	

3	

grep	Examples	
• grep 'men' greptest
• grep 'fo*' greptest
• egrep 'fo+' greptest
• egrep –v 'fo+' greptest
• egrep -n '[Tt]he' greptest
• fgrep 'The' greptest

Jan	25,	2017	 Sprenkle	-	CSCI397	 9	

SHELL	SCRIPTING	

Jan	25,	2017	 Sprenkle	-	CSCI397	 10	

Shell	Scripts	
• Script:	a	shell	program	
• Tool	for	building	applicaVons	by	“gluing	
together”	system	calls,	tools,	uVliVes,	and	
compiled	binaries	

• Just	about	everything	we’ve	done	so	far	is	
available	for	use	in	a	script	
Ø Adds	even	more	

• Good	for	repeVVve	tasks	that	don’t	require	a	
more	structured	programming	language	

Jan	25,	2017	 Sprenkle	-	CSCI397	 11	

Shell	ScripVng	vs.	[C/Python/Java]	Programming	

Jan	25,	2017	 Sprenkle	-	CSCI397	

Advantages	
Easy	to	work	with/use	other	
programs	
Easy	to	work	with	directories,	
files	
Easy	to	work	with	strings	
(easier	than	C,	at	least)	
Good	for	prototyping	

12	

1/27/17	

4	

Shell	ScripVng	vs.	[C/Python/Java]	Programming	

Jan	25,	2017	 Sprenkle	-	CSCI397	

Advantages	 Disadvantages	
Easy	to	work	with/use	other	
programs	

Slower	

Easy	to	work	with	directories,	
files	

Not	well-suited	for	algorithms	
and	data	structures	

Easy	to	work	with	strings	
(easier	than	C,	at	least)	
Good	for	prototyping	

In	some	ways,	we’ll	love	it;	
in	some	ways,	we’ll	hate	it.	

Scripts	tend	not	to	be	long	

13	

Shell	Scripts	
• A	shell	script	is	a	regular	text	file	that	contains	
shell	or	UNIX	commands	

• Kernel	uses	the	first	line	of	script	to	determine	
which	shell	script	to	use	
Ø #!pathname-of-shell	

• Kernel	invokes	pathname	and	sends	the	script	as	an	
argument	to	be	interpreted	

Ø If	#!	is	not	specified,	the	current	shell	assumes	it	is	a	
script	in	its	own	language	
• Can	lead	to	problems	

Jan	25,	2017	 Sprenkle	-	CSCI397	 14	

Simple	Example	

#!/bin/bash  
 
echo "Hello World"

Jan	25,	2017	 Sprenkle	-	CSCI397	

Command	to	execute	

Which	shell	to	use	

Look	at	the	available	shells	by	execuVng	
ls -l /bin/*sh

What	do	you	noVce	about	the	shells?	

echo –	like	a	print	statement	

15	

Invoking	a	Script	
• A	script	can	be	invoked	as:	

Ø sh scr_name [arg …]
Ø sh < scr_name [args …]
Ø path/scr_name [arg …]

• Before	running	it,	it	must	have	execute	permission:	
Ø chmod +x scr_name

Where	sh	is	whatever	
shell	you	want	

Jan	25,	2017	 Sprenkle	-	CSCI397	

We’ll	typically	use	either	the	1st	or	3rd	execuVon	opVon	
and	we’ll	use	the	bash shell	

16	

1/27/17	

5	

Your	First	Script	
• Write	a	script	that	

Ø Shows	the	Vme	and	date	
Ø Lists	all	logged-in	users	
Ø Saves	the	output	into	a	logfile	

• Build	in	pieces	
• Execute	and	test	your	script	

Ø Verify	the	output	in	the	logfile	

Jan	25,	2017	 Sprenkle	-	CSCI397	 17	

Types	of	Commands	
All	behave	the	same	way	
• Programs	

Ø Most	that	are	part	of	the	OS	in	/bin
• Built-in	commands	
• FuncVons	
• Aliases	

Jan	25,	2017	 Sprenkle	-	CSCI397	 18	

Built-in	Commands	
• Built-in	commands	are	internal	to	the	shell	and	do	
not	create	a	separate	process	

• Commands	are	built-in	because:	
Ø They	are	intrinsic	to	the	language	(exit)	
Ø They	produce	side	effects	on	the	current	process	(cd)	
Ø They	perform	faster	

• No	fork/exec	
• Special	built-ins	

Ø : . break continue eval exec export
exit readonly return set shift trap
unset

Jan	25,	2017	 Sprenkle	-	CSCI397	 19	

Important	Built-in	Commands	

Jan	25,	2017	 Sprenkle	-	CSCI397	

exec Replaces	shell	with	program	
cd Change	working	directory	
shift Rearrange	posiVonal	parameters	
set Set	posiVonal	parameters	
wait Wait	for	background	process	to	exit	
umask Change	default	file	permissions	
exit Quit	the	shell	
eval Parse	and	execute	string	

20	

Check out cd:
1. which cd
2. more `which cd`

1/27/17	

6	

Important	Built-in	Commands	

Jan	25,	2017	 Sprenkle	-	CSCI397	

time Run	command	and	print	Vmes	
export Put	variable	into	environment	
trap Set	signal	handlers	
continue ConVnue	in	loop	
break Break	in	loop	
return Return	from	funcVon	
: True	
. Read	file	of	commands	into	current	shell	

21	

Comments	
• Comments	begin	with	an	#
• Comments	end	at	the	end	of	the	line	
• Comments	can	begin	whenever	a	token	begins	
• Our	text	editors	should	help	you	with	syntax	
highlighVng	

• Examples:	

Jan	25,	2017	 Sprenkle	-	CSCI397	

This is a comment
and so is this
grep foo bar # this is a comment
grep foo bar# this is not a comment

Add	a	comment	at	2nd	line	in	your	script	that	lists	you	as	author	
22	

Variables	
• To	set:	

name=value
Ø Variables	are	untyped	

• Read:		$var
• Variables	can	be	local	or	environment	

Ø Environment	variables	are	part	of	UNIX	and	can	be	
accessed	by	child	processes	

• Turn	local	variable	into	environment	var:	
 export variable

Jan	25,	2017	 Sprenkle	-	CSCI397	

NoVce	no	spaces	around	=	

23	

Variable	Example	

#!/bin/sh  
 
MESSAGE="Hello World"  
echo $MESSAGE
echo '$MESSAGE'
echo "$MESSAGE"

Jan	25,	2017	 Sprenkle	-	CSCI397	
variable.sh	

Prints	variable	
Prints	literally	
Prints	variable	

24	

1/27/17	

7	

Using	Environment	Variables	

Jan	25,	2017	 Sprenkle	-	CSCI397	

#!/bin/bash

echo I am $USER
echo "I live at $HOME"

env_var.sh	

Both	statements	would	
work	either	with	or	
without	quotes	

25	

Assign	2	
• Filters	pracVce	

Ø Do	what	is	requested	first	and	record	your	
commands	in	a	file	
• Record	your	analysis	in	that	file.	

Ø Then,	demonstrate	it	all	in	one	script	file	

Jan	25,	2017	 Sprenkle	-	CSCI397	 26	

