
1/30/17	

1	

Review	
• What	are	regular	expressions?	

Ø What	can	we	represent	with	regular	expressions?		
Ø How	do	we	represent	those	things?	

• Which	command	should	you	use	for	fast,	
enhanced	searching	with	regular	expressions?	

• What	are	the	benefits	of	bash	scripts?	
• How	do	we	run	bash	scripts?	
• What	can	we	do	in	bash	so	far?	

Jan	30,	2017	 Sprenkle	-	CSCI397	 1	

Today	
• bash	

Jan	30,	2017	 Sprenkle	-	CSCI397	 2	

Bash	ScripNng	
• What	are	some	programming	language	
structures	that	we	sNll	need	to	learn	about	Bash?	

Jan	30,	2017	 Sprenkle	-	CSCI397	 3	

Copy the $CS397/handouts/bash directory into your cs397 directory

Parameters	
• A	parameter	is	one	of	the	following:	

Ø A	posi%onal	parameter,	starNng	from	0	
Ø A	special	parameter	

• To	get	the	value	of	a	parameter:	${param}
Ø Can	be	part	of	a	word		(abc${foo}def)	
Ø Works	within	double	quotes	

• The	{}	can	be	omiUed	for	simple	variables,	
special	parameters,	and	single	digit	posiNonal	
parameters	

Jan	30,	2017	 Sprenkle	-	CSCI397	 4	

1/30/17	

2	

PosiNonal	Parameters	
• The	arguments	to	a	shell	script	

Ø $0, $1, $2, $3 …
Ø Parameter	0	is	the	name	of	the	shell	or	the	shell	script

• The	arguments	to	a	shell	func%on	
• Arguments	to	the	set built-in	command	

Ø set this is a test
• $1=this, $2=is, $3=a, $4=test

• Manipulated	with	shift
Ø shift 2

• $1=a, $2=test

Jan	30,	2017	 Sprenkle	-	CSCI397	 5	

Example	with	Parameters	
Script	
	
	
	
	
	
Invoca-on:	

Jan	30,	2017	 Sprenkle	-	CSCI397	

#!/bin/sh  
 
Parameter 1: string  
Parameter 2: file  
grep $1 $2 | wc –l

$ bash countlines ing /usr/share/dict/words	
30415	

countlines
6	

Special	Parameters	

Jan	30,	2017	 Sprenkle	-	CSCI397	

Parameter	 Meaning	
$# Number	of	posiNonal	parameters	
$- OpNons	currently	in	effect	
$? Exit	value	of	last	executed	command	
$$ Process	number	of	current	process	
$! Process	number	of	background	process	
$* All	arguments	on	command	line	from	1	on	
“$@” All	arguments	on	command	line	

Individually	quoted	“$1”	“$2”	…;	good	if	
parameters	contain	spaces	

countlines_params
7	

Special	Characters	
•  The	shell	processes	the	following	characters	specially	
unless	quoted:	
Ø  | & () < > ; " ' $ ` space tab newline

•  The	following	are	special	whenever	paUerns	are	
processed:	
Ø  * ? []

•  The	following	are	special	at	the	beginning	of	a	word:	
Ø  # ~

•  The	following	is	special	when	processing	assignments:	
Ø  	=

Jan	30,	2017	 Sprenkle	-	CSCI397	 8	

1/30/17	

3	

Here	Documents	
•  Shell	provides	alternaNve	ways	of	supplying	standard	
input	to	commands	(an	anonymous	file)	

•  Shell	allows	in-line	input	redirecNon	using	<< called	here	
documents	

•  Syntax:	
		

• arbitrary-delimiter should	be	a	string	that	does	
not	appear	in	text	

Jan	30,	2017	 Sprenkle	-	CSCI397	

command [arg(s)] << arbitrary-delimiter
command input
 :
 :
arbitrary-delimiter

9	

Here	Document	Example	
#!/bin/sh  
 
mail –s "Groceries" sprenkles@wlu.edu << END
Don’t forget your grocery list
Eggs
Milk
Bread
END

Jan	30,	2017	 Sprenkle	-	CSCI397	
groceries.sh

10	

(Only works on hydros, which has the mail server.)

Command	SubsNtuNon:	``	
• Used	to	turn	the	output	of	a	command	into	a	
string	

• Used	to	create	arguments	or	variables	

Jan	30,	2017	 Sprenkle	-	CSCI397	

$ date
Mon Jan 30 12:51:50 EST 2017
$ NOW=`date`
$ echo $NOW
Mon Jan 30 12:51:54 EST 2017
$ PATH=`myscript`:$PATH

11	

Compound	Commands	
• MulNple	commands	

Ø Separated	by	semicolon	or	newline	
• Command	groupings	

Ø pipelines	
• Subshell	

(command1; command2) > file
• Boolean	operators	
• Control	structures	

Jan	30,	2017	 Sprenkle	-	CSCI397	 12	

1/30/17	

4	

Boolean	Operators	
• Exit	value	of	a	program	is	a	number	

Ø 0	means	success	
Ø anything	else	is	a	failure	code	

• cmd1 && cmd2
Ø executes	cmd2	if	cmd1	is	successful	

• cmd1 || cmd2
Ø executes	cmd2	if	cmd1	is	not	successful	

Jan	30,	2017	 Sprenkle	-	CSCI397	

$ ls bad_file > /dev/null && date  
$ ls bad_file > /dev/null || date  
Mon Jan 30 12:32:05 EST 2017

Send	output	to	black	hole	
(Can’t	be	read)	

13	

Control	Structures	

Jan	30,	2017	 Sprenkle	-	CSCI397	

if expression  
then  

command1  
else  

command2  
fi

14	

What	is	an	expression?	
• Any	UNIX	command.			
• Evaluates	to	true	if	the	exit	code	is	0,	false	if	the	
exit	code	>	0	

• Special	command	/bin/test	handles	most	
common	expressions:	
Ø String	compare	
Ø Numeric	comparison	
Ø Check	file	properNes	

• []	oken	a	built-in	version	of	/bin/test	for	
syntacNc	sugar	

	
Jan	30,	2017	 Sprenkle	-	CSCI397	 15	

Examples	
if test $USER = "sprenkle"  
then  

echo "I know you"  
else  

echo "I don’t know you"  
fi

if [-f /tmp/stuff] && \
 [`wc –l /tmp/stuff | cut -f1 -d " "` -gt 10]  
then  

echo "The file has more than 10 lines in it"  
else  

echo "The file is nonexistent or small"  
fi

Jan	30,	2017	 Sprenkle	-	CSCI397	

know.sh

filesize.sh
16	

1/30/17	

5	

test Summary	
• String	based	tests	

• Numeric	tests	
	

Jan	30,	2017	 Sprenkle	-	CSCI397	

-z string	 Length	of	string	is	0	
-n string	 Length	of	string	is	not	0	
string1 = string2	 Strings	are	idenNcal	
string1 != string2	 Strings	differ	
string string	is	not	NULL	

int1 –eq int2	 First	int	equal	to	second	
int1 –ne int2	 First	int	not	equal	to	second	
-gt,	-ge,	-lt,	-le	 greater,	greater/equal,	less,	less/equal	

17	

test Summary	
• File	tests	

• Logic	
	

Jan	30,	2017	 Sprenkle	-	CSCI397	

-r file	 File	exists	and	is	readable	
-w file	 File	exists	and	is	writable	
-f file	 File	is	regular	file	(exists)	
-d file	 File	is	directory	
-s file	 File	exists	and	is	not	empty	

! Negate	result	of	expression	
-a, -o And	operator,	or	operator	
(expr) Groups	an	expression	

18	

What	does	this	code	do?	

• Add	appropriate	code	to	countlines

Jan	30,	2017	 Sprenkle	-	CSCI397	

ARGS=1 # Number of arguments expected
Exit value if incorrect number of args passed.
E_BADARGS=65

test $# -lt $ARGS && echo "Usage: `basename $0` <arg1>" && \
exit $E_BADARGS

19	

ArithmeNc	
• Use	external	command	/bin/expr
• expr	expression

Ø Evaluates	expression	and	sends	the	result	to	
standard	output	

Ø Yields	a	numeric	or	string	result	

Ø ParNcularly	useful	with	command	subsNtuNon	
	

Jan	30,	2017	 Sprenkle	-	CSCI397	

expr 4 "*" 12
expr "(" 4 + 3 ")" "*" 2

X=`expr $X + 2`

Need	to	quote	the	*	b/c	shell	
interprets	it	

arith_operators.sh
20	

1/30/17	

6	

Double	parentheses	and	the	let statement	

• Double	parentheses	

• Let	statement	

Jan	30,	2017	 Sprenkle	-	CSCI397	

let z=z+3
let "z += 3" Quotes	permit	the	use	of	spaces	in	

variable	assignment	

let.sh

z=$(($z+3))
z=$((z+3))

21	

Control	Structures	Summary	
• if … then … fi
• while … done
• until … do … done
• for … do … done
• case … in … esac

Jan	30,	2017	 Sprenkle	-	CSCI397	 22	

for loops	
		

• Examples:		

Jan	30,	2017	 Sprenkle	-	CSCI397	

for var in list  
do  

command  
done

sum=0  
for var in "$@"  
do  

 sum=`expr $sum + $var`  
done
echo "The sum is $sum"

for file in *.sh
do

echo "We have $file"  
done

for_file.sh
for_params.sh

sum_params.sh

23	

Looking	Ahead	
• Assignment	2	due	Wednesday	

Jan	30,	2017	 Sprenkle	-	CSCI397	 24	

