
2/8/17	

1	

Review	
• What	are	build	tools?	

Ø What	do	they	do?	

• What	are	examples	of	build	tools?	
Ø How	do	they	work?	

Feb	3,	2017	 Sprenkle	-	CSCI397	 1	

Build	and	Management	Tools	
• Maven	
• ConNnuous	IntegraNon	

Feb	3,	2017	 Sprenkle	-	CSCI397	 2	

MoNvaNng	Build	Tools:		
Common	Use	Cases	

Feb	3,	2017	 Sprenkle	-	CSCI397	 3	

Customer	
Interface	

Back	End	

Service	
Interface	

Complete	ApplicaNon	

How often should we do these builds?

MoNvaNng	Build	Tools:		
Common	Use	Cases	

Feb	3,	2017	 Sprenkle	-	CSCI397	 4	

Customer	
Interface	

Back	End	

Service	
Interface	

Test	Deployment	

Customer	1	
Deployment	

Customer	2	
Deployment	

2/8/17	

2	

MoNvaNng	Build	Tools:		
Common	Use	Cases	

Feb	3,	2017	 Sprenkle	-	CSCI397	 5	

Customer	
Interface	

Back	End	

Service	
Interface	

Test	Deployment	

Stable	Version	

Daily	Build	

Create every night
Then run test cases

Generate at the �
end of a cycle

Generate every night �
for early adopters

Comparing	Make	and	Ant	
simulator: $(OBJECTS)
 $(CC) $(CFLAGS) –o simulator $(OBJECTS)
simulator.o: simulator.c
 $(CC) $(CFLAGS) –c simulator.c

customer.o: customer.c
 $(CC) $(CFLAGS) –c customer.c
…
clean:
 rm $(OBJECTS) simulator

Feb	3,	2017	 Sprenkle	-	CSCI397	

Commands	

6	

<target name="compile"
 description="Compile the source code">
 <mkdir dir="build/classes"/>
 <javac srcdir="src"
 destdir="build/classes"
 debug="on">
 <include name="**/*.java"/>
 <classpath refid="build.class.path"/>
 </javac>
</target>

Feb	3,	2017	 Sprenkle	-	CSCI397	 7	

Apache	
• Maven:	Yiddish	word	meaning	accumulator	of	
knowledge	

• For	building	and	managing	any	Java-based	
project	
Ø Uses	a	Project	object	model	(POM)	

• Goal:	download	and	build	a	project	quickly	

Feb	3,	2017	 Sprenkle	-	CSCI397	

http://maven.apache.org/
8	

2/8/17	

3	

Maven	
• Can	be	used	as	standalone	tool	or	within	Eclipse	
(what	we’ll	do)	

Feb	3,	2017	 Sprenkle	-	CSCI397	 9	

Maven	

Feb	3,	2017	 Sprenkle	-	CSCI397	 10	

Maven	Philosophy:	ConvenNon	Over	ConfiguraNon		

• Maven’s	locaNon	assumpNons:		
Ø source	code:	${basedir}/src/main/java	
Ø Resources:	${basedir}/src/main/resources	
Ø Tests:		${basedir}/src/test	

• Other	assumpNons:	
Ø Want	to	produce	a	JAR	file	in	${basedir}/target	
Ø Compile	byte	code	to	${basedir}/target/classes	

Feb	3,	2017	 Sprenkle	-	CSCI397	 11	

How does this convention philosophy help us?

Maven	Philosophy:	ConvenNon	Over	ConfiguraNon		

• Ant-based	builds	define	locaNons	
Ø No	built-in	idea	of	where	source	code	or	resources	
are	

Ø User	has	to	supply	this	informaNon	à	more	work	for	
us!!	

Feb	3,	2017	 Sprenkle	-	CSCI397	

How	does	this	philosophy	help	us?	

<target name="compile"
 description="Compile the source code">
 <mkdir dir="build/classes"/>
 <javac srcdir="src"
 destdir="build/classes"
 debug="on">
 <include name="**/*.java"/>
 <classpath refid="build.class.path"/>
 </javac>
</target>

Could	be	for	any	project:	

12	

2/8/17	

4	

Maven	Philosophy:		
ConvenNon	Over	ConfiguraNon		
• Beyond	locaNon	convenNons…	
• Core	plugins	apply	a	common	set	of	convenNons	
for	compiling	source	code,	packaging	
distribuNons,	generaNng	web	sites,	and	many	
other	processes	
Ø Example:	similar	to	Ant	compile	target	

• Likle	effort:		
Ø Put	source	in	the	correct	directory	
Ø Maven	handles	the	rest	

Feb	3,	2017	 Sprenkle	-	CSCI397	 13	

Consequences	of	ConvenNon	Over	ConfiguraNon		

• Users	may	feel	forced	to	use	a	parNcular	
methodology	or	approach	

• Most	defaults	can	be	customized	
• Can	create	custom	plugins	for	your	requirements	

Feb	3,	2017	 Sprenkle	-	CSCI397	 14	

Maven	Build	Lifecycle	
• Defined	by	a	list	of	build	phases	
• Example	build	phases	

Ø compile	-	compile	the	source	code	of	the	project	
Ø test	-	test	the	compiled	source	code	using	a	
suitable	unit	tesNng	framework	

Ø package	-	take	the	compiled	code	and	package	it	in	
its	distributable	format,	such	as	a	JAR	

• When	execute	a	phase,	executes	life	cycle’s	
previous	phases	first,	in	order		
Ø E.g.,	calling	package	would	execute	compile	and	then	
test	

Feb	3,	2017	 Sprenkle	-	CSCI397	 15	

Maven	Build	Lifecycle	
• 3	built-in	build	lifecycles	

Ø default	lifecycle	handles	project	deployment	
Ø clean	lifecycle	handles	project	cleaning	
Ø site	lifecycle	handles	the	creaNon	of	project's	site	
documentaNon	

Feb	3,	2017	 Sprenkle	-	CSCI397	 16	

2/8/17	

5	

CreaNng	a	Test	Class	
• Make	sure	to	put	your	test	class	in	the	right	
place,	with	an	appropriate	package	name	

• Click	setUp,	add	tests	
• DON’T	ADD	JUNIT	TO	YOUR	CLASSPATH	

Feb	3,	2017	 Sprenkle	-	CSCI397	 17	

Adding	a	Dependency	

• Several	different	ways	this	can	be	done	
• Aper	add	the	first	one,	can	just	copy	paste	the	
XML	code	provided	

Feb	3,	2017	 Sprenkle	-	CSCI397	 18	

Adding	a	Dependency	

• Give	Eclipse	some	Nme	to	work	it	out	
• View	the	Maven	Dependencies	in	Eclipse	

Feb	3,	2017	 Sprenkle	-	CSCI397	 19	

Maven	Repository	
• How	to	use	it	
• Typically:	looking	for	a	stable	release	

Ø rc	=	release	candidate	

Feb	3,	2017	 Sprenkle	-	CSCI397	 20	

https://mvnrepository.com/

2/8/17	

6	

Summary:	Build	Tools	
• Automate	process	of	building	various	“arNfacts”	
from	your	source	code	
Ø Examples:	compile,	distribute	(jars),	documentaNon,	
commercial_version,	…	

Feb	3,	2017	 Sprenkle	-	CSCI397	 21	

Summary:	Build	Tools	
• Automate	process	of	building	various	“arNfacts”	
from	your	source	code	
Ø Examples:	compile,	distribute	(jars),	documentaNon,	
commercial_version,	…	

• Why	is	there	more	than	one	build	tool?	
• What	are	the	similariNes	and	differences	
between	make,	ant,	and	maven?	

Feb	3,	2017	 Sprenkle	-	CSCI397	 22	

Running	Discussion	QuesNons	
• Why	does	the	tool	exist?		What	is	its	purpose?	
• What	can	the	tool	do?	
• What	can’t	the	tool	do?	

Ø Because	it	hasn’t	been	done?		Because	of	current	
technology	limitaNons?		Or	some	other	limitaNons?	

Ø If	because	it	hasn’t	been	done,	what	can	do	to	
change	that?	

Feb	3,	2017	 Sprenkle	-	CSCI397	 23	

