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Review	
• What	were	the	terms	we	learned	on	Monday?	

Ø How	do	they	fit	together?	
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Why	Version	Control	Systems?	
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Why	Version	Control	Systems?	
• Collaborate	on	code	with	a	team	
• Roll	back/restore	older	version	of	code	

Ø Granularity:	Individual	files	or	collecNon	of	files	
• Store	ownership	of	files/changes	and	when	
occurred	

• Record	reasons	for	changes		
• Track	progress	
• Each	developer	has	own	sandbox	of	code	
• Maintaining	mulNple	branches	
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Centralized	vs	Distributed	VCS	
• What	are	their	characterisNcs?	
• What	are	examples	of	each?	
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Centralized	vs	Distributed	VCS	
• Centralized	(CVS,	Subversion)	

Ø One	central	repository:	the	gold	standard	
Ø All	updates	made	against	central	repo	
Ø No	access	to	repo?	No	updates	
Ø Must	sync	with	central	repo	before	adding	updates	

• Decentralized	(git,	mercurial,	bazaar)	
Ø MulNple	copies/clones/forks	of	repositories	
Ø You	can	always	have	a	local	repo		
Ø You	can	opNonally	have	a	central	repo	
Ø More	distributed	sharing	opNons	
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Centralized	VCS	Workflow	
1.  Pull	changes	other	

people	made	
2. Make	your	

changes,	and	
make	sure	they	
work	properly	

3.  Commit	your	
changes	to	the	
central	server	
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Repository	
(files,	metadata:	

changes,	
comments,	…)	

Working	Copy	

updates commits

Working	
Copy	

Distributed	VCS	Workflow	
1.  Clone	copies	of	repository	
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Authorita>ve	
Repository	

(files,	metadata:	
changes,	comments,	…)	

Repository	
(files,	metadata:	

changes,	
comments,	…)	

Repository	
(files,	metadata:	

changes,	
comments,	…)	

clone

clone

Distributed	VCS	Workflow	
1.  Clone	copies	of	repository	
2. Work	(mostly)	locally	

Ø  OpNonally	push	to	remote	but	not	necessarily	an	
authoritaNve	repository		
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Discussion		
•  CVCS:	Mostly	remote	
operaNons	
Ø  Requires	network	

connecNvity	for	updates,	
commits	
•  More	expensive	operaNons	

Ø  Less	space	for	each	client	
	

•  DVCS:	Mostly	local	
operaNons	(faster)	
Ø Does	not	require	network	

connecNvity	
Ø Whole	copy	of	the	

repository	
Ø More	space	for	each	

“client”	
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What	Should	Be	Under	Version	Control?	
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What	Should	Be	Under	Version	Control?	
• Yes:	

Ø Text-based	things	made	by	humans	
Ø Source	code	
Ø Scripts	
Ø Files	that	aren’t	going	to	change	

• No:	
Ø AutomaNcally	built	things	

•  (executables,	object	files,	jar	files)	
Ø  	Temporary	files	
Ø SensiNve	data:	passwords,	private	ssh	keys	
Ø Most	VCSs	have	ways	to	Ignore	these	
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Configuring	git	

• Check	the	configuraNon	
Ø git config -l 

•  if	no	user.name:		
Ø git config --global user.name "My Name" 
Ø git config --global user.email 
"me@place.com"

• git config --global color.ui auto
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Configure git to identify your code modifications �
as belonging to you

Using	git:	iniNalizing	a	repository	
• Repository:	Project	
• Go	into	your	cs397	directory	
• Execute	git init git_repo

Ø Creates	a	new	directory	named	git_repo	and	
iniNalizes	a	repository	

Ø Creates	a	new	subdirectory	named	.git that	
contains	all	of	your	repository	files	

Ø View	the	contents	of	the	.git directory	
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Using	git:	checking	the	status	
• git status

Ø show	modified	files	in	working	directory,	staged	for	
next	commit	
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git	File	States	
• Commi@ed:	the	data	is	safely	stored	in	your	local	
repository	

• Modified:	changed	a	file	but	have	not	commijed	
it	to	repository	yet	

• Staged:	marked	a	modified	file	in	its	current	
version	to	go	into	your	next	commit	snapshot.	
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git	Project	SecNons	
• .git	directory:	stores	your	project’s	metadata	and	
object	database	
Ø Copied	when	you	clone	a	repository	from	another	
computer.	

• Working	directory:	single	checkout	of	one	
version	of	the	project	
Ø Files	are	pulled	out	of	the	compressed	database	in	
the	Git	directory	and	placed	on	disk	for	you	to	use	or	
modify.	

• Staging	area:	stores	informaNon	about	what	will	
go	into	your	next	commit	
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Using	git:	updaNng	a	repository	
• Create	a	file	

Ø touch myscript.sh
• Add	that	script	to	git	for	tracking	

Ø git add myscript.sh
• Commit	the	files	

Ø git commit -m 'initial version’
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Using	git:	updaNng	a	repository	
• Edit	myscript.sh
• Run git status	
• Try	to	commit		

Ø git commit
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git	Work	flow	
1.  Modify	files	in	your	working	directory	
2.  Stage	the	files,	adding	snapshots	to	your	staging	area.	
3.  Commit:	takes	the	files	in	the	staging	area	and	stores	

that	snapshot	permanently	to	.git directory	
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File	Stages	
• Every	file	is	either	tracked	or	untracked	
• Tracked:	files	in	the	last	snapshot	

Ø can	be	unmodified,	modified,	or	staged	
• Untracked:	everything	else	

Ø Any	files	in	your	working	directory	that	were	not	in	
your	last	snapshot	and	are	not	in	your	staging	area	

• When	you	first	clone	a	repository,	all	of	your	files	
will	be	tracked	and	unmodified	
Ø Git	just	checked	them	out	and	you	haven’t	edited	
them	
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File	Stages	

•  Source:	https://git-scm.com/book/en/v2/Git-Basics-
Recording-Changes-to-the-Repository 
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Using	git:	updaNng	a	repository	
• Create	a	new	file	

Ø touch otherscript.sh
• Run git status
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git:	commikng	our	changes	
• We’re	happy	with	our	files	(one	new,	one	
modified)	and	we	want	to	commit	them	

• What	should	we	do?	
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Git:	commikng	our	changes	
• git add *.sh
• git commit –m "New version!"
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What’s	been	happening?	
• git log
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Branches	
• We’ve	been	working	in	the	master	
•  Instead,	let’s	use	branches	so	that	we	can	work	
on	mulNple	features	in	parallel	

• Create	a	new	branch	and	switch	to	it	
Ø git checkout –b mybranch
Ø git status
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Update	code	in	the	branch	
• Add	file	newscript.sh
• Stage	and	commit	the	file:	

Ø git add newscript.sh
Ø git commit –m "added newscript.sh"

• git status
• git branch

Ø list	your	branches	
Ø a * will	appear	next	to	the	currently	acNve	branch	
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Merge	our	branch	into	the	master	
• git checkout master

Ø Go	back	into	the	master	branch	
Ø merge	the	specified	branch’s	history	into	the	current	
one	

• git merge mybranch
Ø Get	the	code	from	mybranch	and	merge	it	into	
here	
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One	More	Time,	with	Feeling	
• Create	a	new	branch	and	switch	to	that	branch	

Ø git checkout -b newfeature
• Edit	newscript.sh	

Ø Add	something	to	it	

• Stage	and	commit	the	file	in	one	step:	
Ø git commit -a –m ”updated …”
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Go	back	to	the	master	
• Go	back	to	the	master	branch	

Ø git checkout master
• Edit	newscript.sh	

Ø Add	something	(different)	to	it	

• Stage	and	commit	the	file	in	one	step:	
Ø git commit -a –m ”updated …”

• Ajempt	to	merge	the	newfeature	branch	into	
the	master	branch	
Ø git merge newfeature
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GIT	COLLABORATION	
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Working	on	a	Shared	Project	
•  I	created	a	repository	for	us	to	use	

Ø git clone /csdept/courses/cs397/
shared/gitrepo/ mycopy

• Go	into	your	copy	
• View	the	contents	
• Transmit	local	branch	commits	to	the	remote	
repository	branch		
Ø git push -u origin master
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Explore	git	
• What	other	git	commands	are	there?	

Ø What	do	they	do?	
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