
3/1/17	

1	

Review	
• What	were	the	terms	we	learned	on	Monday?	

Ø How	do	they	fit	together?	

March	1,	2017	 Sprenkle	-	CSCI397	 1	

Why	Version	Control	Systems?	

March	1,	2017	 Sprenkle	-	CSCI397	 2	

Why	Version	Control	Systems?	
• Collaborate	on	code	with	a	team	
• Roll	back/restore	older	version	of	code	

Ø Granularity:	Individual	files	or	collecNon	of	files	
• Store	ownership	of	files/changes	and	when	
occurred	

• Record	reasons	for	changes		
• Track	progress	
• Each	developer	has	own	sandbox	of	code	
• Maintaining	mulNple	branches	

March	1,	2017	 Sprenkle	-	CSCI397	 3	

Centralized	vs	Distributed	VCS	
• What	are	their	characterisNcs?	
• What	are	examples	of	each?	

March	1,	2017	 Sprenkle	-	CSCI397	 4	



3/1/17	

2	

Centralized	vs	Distributed	VCS	
• Centralized	(CVS,	Subversion)	

Ø One	central	repository:	the	gold	standard	
Ø All	updates	made	against	central	repo	
Ø No	access	to	repo?	No	updates	
Ø Must	sync	with	central	repo	before	adding	updates	

• Decentralized	(git,	mercurial,	bazaar)	
Ø MulNple	copies/clones/forks	of	repositories	
Ø You	can	always	have	a	local	repo		
Ø You	can	opNonally	have	a	central	repo	
Ø More	distributed	sharing	opNons	

March	1,	2017	 Sprenkle	-	CSCI397	 5	

Centralized	VCS	Workflow	
1.  Pull	changes	other	

people	made	
2. Make	your	

changes,	and	
make	sure	they	
work	properly	

3.  Commit	your	
changes	to	the	
central	server	

March	1,	2017	 Sprenkle	-	CSCI397	 6	

Repository	
(files,	metadata:	

changes,	
comments,	…)	

Working	Copy	

updates commits

Working	
Copy	

Distributed	VCS	Workflow	
1.  Clone	copies	of	repository	

March	1,	2017	 Sprenkle	-	CSCI397	 7	

Authorita>ve	
Repository	

(files,	metadata:	
changes,	comments,	…)	

Repository	
(files,	metadata:	

changes,	
comments,	…)	

Repository	
(files,	metadata:	

changes,	
comments,	…)	

clone

clone

Distributed	VCS	Workflow	
1.  Clone	copies	of	repository	
2. Work	(mostly)	locally	

Ø  OpNonally	push	to	remote	but	not	necessarily	an	
authoritaNve	repository		

March	1,	2017	 Sprenkle	-	CSCI397	 8	



3/1/17	

3	

Discussion		
•  CVCS:	Mostly	remote	
operaNons	
Ø  Requires	network	

connecNvity	for	updates,	
commits	
•  More	expensive	operaNons	

Ø  Less	space	for	each	client	
	

•  DVCS:	Mostly	local	
operaNons	(faster)	
Ø Does	not	require	network	

connecNvity	
Ø Whole	copy	of	the	

repository	
Ø More	space	for	each	

“client”	

March	1,	2017	 Sprenkle	-	CSCI397	 9	

What	Should	Be	Under	Version	Control?	

March	1,	2017	 Sprenkle	-	CSCI397	 10	

What	Should	Be	Under	Version	Control?	
• Yes:	

Ø Text-based	things	made	by	humans	
Ø Source	code	
Ø Scripts	
Ø Files	that	aren’t	going	to	change	

• No:	
Ø AutomaNcally	built	things	

•  (executables,	object	files,	jar	files)	
Ø  	Temporary	files	
Ø SensiNve	data:	passwords,	private	ssh	keys	
Ø Most	VCSs	have	ways	to	Ignore	these	

March	1,	2017	 Sprenkle	-	CSCI397	 11	 March	1,	2017	 Sprenkle	-	CSCI397	 12	

https://git-scm.com/book/en/v2



3/1/17	

4	

Configuring	git	

• Check	the	configuraNon	
Ø git config -l 

•  if	no	user.name:		
Ø git config --global user.name "My Name" 
Ø git config --global user.email 
"me@place.com"

• git config --global color.ui auto
March	1,	2017	 Sprenkle	-	CSCI397	 13	

Configure git to identify your code modifications �
as belonging to you

Using	git:	iniNalizing	a	repository	
• Repository:	Project	
• Go	into	your	cs397	directory	
• Execute	git init git_repo

Ø Creates	a	new	directory	named	git_repo	and	
iniNalizes	a	repository	

Ø Creates	a	new	subdirectory	named	.git that	
contains	all	of	your	repository	files	

Ø View	the	contents	of	the	.git directory	

March	1,	2017	 Sprenkle	-	CSCI397	 14	

Using	git:	checking	the	status	
• git status

Ø show	modified	files	in	working	directory,	staged	for	
next	commit	

March	1,	2017	 Sprenkle	-	CSCI397	 15	

git	File	States	
• Commi@ed:	the	data	is	safely	stored	in	your	local	
repository	

• Modified:	changed	a	file	but	have	not	commijed	
it	to	repository	yet	

• Staged:	marked	a	modified	file	in	its	current	
version	to	go	into	your	next	commit	snapshot.	

March	1,	2017	 Sprenkle	-	CSCI397	 16	



3/1/17	

5	

git	Project	SecNons	
• .git	directory:	stores	your	project’s	metadata	and	
object	database	
Ø Copied	when	you	clone	a	repository	from	another	
computer.	

• Working	directory:	single	checkout	of	one	
version	of	the	project	
Ø Files	are	pulled	out	of	the	compressed	database	in	
the	Git	directory	and	placed	on	disk	for	you	to	use	or	
modify.	

• Staging	area:	stores	informaNon	about	what	will	
go	into	your	next	commit	

March	1,	2017	 Sprenkle	-	CSCI397	 17	

Using	git:	updaNng	a	repository	
• Create	a	file	

Ø touch myscript.sh
• Add	that	script	to	git	for	tracking	

Ø git add myscript.sh
• Commit	the	files	

Ø git commit -m 'initial version’

March	1,	2017	 Sprenkle	-	CSCI397	 18	

Using	git:	updaNng	a	repository	
• Edit	myscript.sh
• Run git status	
• Try	to	commit		

Ø git commit

March	1,	2017	 Sprenkle	-	CSCI397	 19	

git	Work	flow	
1.  Modify	files	in	your	working	directory	
2.  Stage	the	files,	adding	snapshots	to	your	staging	area.	
3.  Commit:	takes	the	files	in	the	staging	area	and	stores	

that	snapshot	permanently	to	.git directory	

March	1,	2017	 Sprenkle	-	CSCI397	 20	



3/1/17	

6	

File	Stages	
• Every	file	is	either	tracked	or	untracked	
• Tracked:	files	in	the	last	snapshot	

Ø can	be	unmodified,	modified,	or	staged	
• Untracked:	everything	else	

Ø Any	files	in	your	working	directory	that	were	not	in	
your	last	snapshot	and	are	not	in	your	staging	area	

• When	you	first	clone	a	repository,	all	of	your	files	
will	be	tracked	and	unmodified	
Ø Git	just	checked	them	out	and	you	haven’t	edited	
them	

March	1,	2017	 Sprenkle	-	CSCI397	 21	

File	Stages	

•  Source:	https://git-scm.com/book/en/v2/Git-Basics-
Recording-Changes-to-the-Repository 

March	1,	2017	 Sprenkle	-	CSCI397	 22	

Using	git:	updaNng	a	repository	
• Create	a	new	file	

Ø touch otherscript.sh
• Run git status

March	1,	2017	 Sprenkle	-	CSCI397	 23	

git:	commikng	our	changes	
• We’re	happy	with	our	files	(one	new,	one	
modified)	and	we	want	to	commit	them	

• What	should	we	do?	

March	1,	2017	 Sprenkle	-	CSCI397	 24	



3/1/17	

7	

Git:	commikng	our	changes	
• git add *.sh
• git commit –m "New version!"

March	1,	2017	 Sprenkle	-	CSCI397	 25	

What’s	been	happening?	
• git log

March	1,	2017	 Sprenkle	-	CSCI397	 26	

Branches	
• We’ve	been	working	in	the	master	
•  Instead,	let’s	use	branches	so	that	we	can	work	
on	mulNple	features	in	parallel	

• Create	a	new	branch	and	switch	to	it	
Ø git checkout –b mybranch
Ø git status

March	1,	2017	 Sprenkle	-	CSCI397	 27	

Update	code	in	the	branch	
• Add	file	newscript.sh
• Stage	and	commit	the	file:	

Ø git add newscript.sh
Ø git commit –m "added newscript.sh"

• git status
• git branch

Ø list	your	branches	
Ø a * will	appear	next	to	the	currently	acNve	branch	

March	1,	2017	 Sprenkle	-	CSCI397	 28	



3/1/17	

8	

Merge	our	branch	into	the	master	
• git checkout master

Ø Go	back	into	the	master	branch	
Ø merge	the	specified	branch’s	history	into	the	current	
one	

• git merge mybranch
Ø Get	the	code	from	mybranch	and	merge	it	into	
here	

March	1,	2017	 Sprenkle	-	CSCI397	 29	

One	More	Time,	with	Feeling	
• Create	a	new	branch	and	switch	to	that	branch	

Ø git checkout -b newfeature
• Edit	newscript.sh	

Ø Add	something	to	it	

• Stage	and	commit	the	file	in	one	step:	
Ø git commit -a –m ”updated …”

March	1,	2017	 Sprenkle	-	CSCI397	 30	

Go	back	to	the	master	
• Go	back	to	the	master	branch	

Ø git checkout master
• Edit	newscript.sh	

Ø Add	something	(different)	to	it	

• Stage	and	commit	the	file	in	one	step:	
Ø git commit -a –m ”updated …”

• Ajempt	to	merge	the	newfeature	branch	into	
the	master	branch	
Ø git merge newfeature

March	1,	2017	 Sprenkle	-	CSCI397	 31	

GIT	COLLABORATION	

March	1,	2017	 Sprenkle	-	CSCI397	 32	



3/1/17	

9	

Working	on	a	Shared	Project	
•  I	created	a	repository	for	us	to	use	

Ø git clone /csdept/courses/cs397/
shared/gitrepo/ mycopy

• Go	into	your	copy	
• View	the	contents	
• Transmit	local	branch	commits	to	the	remote	
repository	branch		
Ø git push -u origin master

March	1,	2017	 Sprenkle	-	CSCI397	 33	

Explore	git	
• What	other	git	commands	are	there?	

Ø What	do	they	do?	

March	1,	2017	 Sprenkle	-	CSCI397	 34	


